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ABSTRACT
Refactoring is nowadays widely adopted in the industry because

bad design decisions can be very costly and extremely risky. On

the one hand, automated refactoring does not always lead to the

desired design. On the other hand, manual refactoring is error-

prone, time-consuming and not practical for radical changes. Thus,

recent research trends in the field focused on integrating developers

feedback into automated refactoring recommendations because

developers understand the problem domain intuitively and may

have a clear target design in mind. However, this interactive process

can be repetitive, expensive, and tedious since developers must

evaluate recommended refactorings, and adapt them to the targeted

design especially in large systems where the number of possible

strategies can grow exponentially.

In this paper, we propose an interactive approach combining

the use of multi-objective and unsupervised learning to reduce the

developer’s interaction effort when refactoring systems. We gener-

ate, first, using multi-objective search different possible refactoring

strategies by finding a trade-off between several conflicting qual-

ity attributes. Then, an unsupervised learning algorithm clusters

the different trade-off solutions, called the Pareto front, to guide

the developers in selecting their region of interests and reduce the

number of refactoring options to explore. The feedback from the

developer, both at the cluster and solution levels, are used to au-

tomatically generate constraints to reduce the search space in the

next iterations and focus on the region of developer preferences. We

selected 14 active developers to manually evaluate the effectiveness

our tool on 5 open source projects and one industrial system. The

results show that the participants found their desired refactorings

faster and more accurate than the current state of the art.
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1 INTRODUCTION
As projects evolve, developers frequently postpone necessary sys-

tem restructuring, known as refactoring [17], in the rush to deliver a

new release until a crisis happens. When that occurs it often results

in substantially degraded system performance, perhaps an inability

to support new features, or even in terminally broken system ar-

chitecture. Thus, refactoring received much attention during the

last two decades to propose solutions that can manage the growing

complexity of software systems nowadays. Most existing studies

focus on either manual or fully automated code-level refactoring.

The manual support, integrated into modern IDEs such as Eclipse,

NetBeans, and Visual Studio [5, 14, 15, 21–23, 26, 27, 30, 32, 33],

consists of helping developers to apply refactorings based on au-

tomated routines that can check a list of pre- and post-conditions

but they have to specify manually which types of refactoring to

be applied, such as extract class or move method, and where. The

fully automated techniques try to identify refactoring opportunities

and which refactorings to apply using static and dynamic analy-

sis, and the history of changes. However, design restructuring is a

human activity that cannot be fully automated because developers

understand the problem domain intuitively and they have targeted

design goals in mind. Thus, several empirical studies show that fully

automated refactoring does not always lead to the desired architec-

ture [8, 10, 23, 24]. Furthermore, manual refactoring is error-prone,

time consuming and not practical for radical changes. For instance,

Batory et al. [22] presented several case studies where refactoring

involved more than 750 refactoring steps on one project and took

more than 3 weeks to execute.

Recently, few approaches have been proposed to interactively

evaluate refactoring recommendations using search-based software

engineering [7, 24, 28]. The developers can provide a feedback

about the refactored code and introduce manual changes to some

of the recommendations. However, this interactive process can be

repetitive, expensive, and tedious since developers must evaluate

recommended refactorings, and adapt them to the targeted design

especially in large systems where the number of possible strategies

can grow exponentially. Thus, we seek, in this work, to answer

the fundamental scientiïňĄc question: "What is the minimal guid-

ance that leads automated search to useful and realistic refactoring

recommendations?"
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In this paper, we propose an interactive approach combining the

use of multi-objective search, based on NSGA-II [12] and unsuper-

vised learning to reduce the developer’s interaction effort when

refactoring systems. We generate, first, using multi-objective search

different possible refactoring strategies by finding a trade-off be-

tween several conflicting quality attributes. Then, an unsupervised

learning algorithm clusters the different trade-off solutions, called

the Pareto front, to guide the developers in selecting their region of

interests and reduce the number of refactoring options to explore.

The feedback from the developer, both at the cluster and solution

levels, are used to automatically generate constraints to reduce

the search space in the next iterations and focus on the region of

developer preferences. For instance, the developer can select the

most relevant cluster of solutions, called region of interest, based

on his preferences and the multi-objective search will reduce the

space of possible solutions, in the next iterations, by generating

constraints from the interaction data such as eliminating part of the

code (e.g classes or methods) that are not relevant for refactoring

to the programmer.

We selected 14 active developers to manually evaluate the ef-

fectiveness our tool on 5 open source projects and one industrial

system. The results show that the participants found their desired

refactorings faster and more accurate than the current state of the

art.

2 PROBLEM STATEMENT
To investigate the challenges associated with current refactoring

tools, a survey was conducted, as part of an NSF I-Corps project,

with 127 professional developers at 38 medium and large companies

including eBay, Amazon, Google, IBM, and others. 112 of these

interviews were conducted face-to-face. As an outcome of these

interviews, the following challenges were identified:

- Challenge 1: The refactorings effort required by exist-
ing approaches and tools. 83% of the interviewed developers

confirmed that they were reluctant to use existing automated refac-

toring tools because those detect, in general, hundreds of code level

quality issues such as anti-patterns but without specifying from

where to start or how they are dependent on each others, nor are

there any clear benefits such as an impact on the system’s quality.

During the interviews, 86% of developers confirmed that they want

better refactoring tools to give them better understanding of design

preferences rather than asking developers to manually inspect a

large list of recommendations covering the whole system. A devel-

oper said "We need better solutions of refactoring tasks that can

reduce the current time-consuming manual work of evaluating a

large number of refactorings. Automated tools provide refactoring

solutions that are hard and costly to repair because they did not

consider our design needs and hard to assess their impact." This

argument is consistent with empirical studies performed by Kim et

al. [22].

- Challenge 2: Lack of visualization support to estimate
the impact of recommended refactorings. 69 out of the 112

participants highlighted in the interviews that it is hard to under-

stand the impact of suggested refactorings on the system and they

have to look manually at the code before and after refactoring.

Determining which anti-pattern should be refactored and how is

never a pure technical problem in practice. Instead, high-level refac-

toring decisions have to take into account trade-offs between code

quality, available resources and expected effort. Furthermore, 53 par-

ticipants mentioned that several refactoring "paths" are discussed

between architects to determine the best solution to restructure

the current architecture or code. However, most of existing refac-

toring tools and approaches just recommend only one sequence of

refactorings to apply.

- Challenge 3: It is difficult for developers to express their
preferences upfront. Based on our extensive experience working

on licensing refactoring research prototypes to industry, developers

always have a concern on expressing their preferences upfront as

an input for a tool to guide refactoring suggestions. They prefer

to get insights from some generated refactoring solutions then

decide which quality attributes they want to improve. However,

several of existing refactoring tools fail to consider the developer

perspective, as the developer has no opportunity to provide feed-

back on the refactoring solution as it is being created. Furthermore,

as development must halt while the refactoring process executes,

fully-automated refactoring methods are not useful for floss refac-

toring where the goal is to maintain good design quality while

modifying existing functionality. The developers have to accept

the entire refactoring solution even though they prefer, in general,

step-wise approaches where the process is interactive and they

have control of the refactorings being applied.

-Challenge 4: Lack of refactoring tools that can learn from
developers interaction. High-level refactorings are usually sys-

tematic and repetitive in different contexts, involving similar changes

to numerous locations [9]. If these repetitive high-level changes

can be learned, abstracted, and automated, a large amount of main-

tenance effort could be saved.

3 CLUSTERING-BASED INTERACTIVE
MULTI-OBJECTIVE SOFTWARE
REFACTORING

The general structure of our approach is sketched in Fig. 1. In

the following, we decribe the different main components of our

approach.

3.1 Phase 1: Multi-Objective Refactoring
Discovering a refactoring solution can be a challenging task since

a large search space needs to be explored. This large search space

is the result of the number of refactoring operations and the impor-

tance of their order and combination. To explore this search space,

we propose an adaptation of the non-dominated sorting genetic

algorithm (NSGA-II) [12] to interactively find a trade-off between

multiple quality attributes.

A multi-objective optimization problem can be formulated in

the following form:

Minimize F (x) = (f1(x), F2(x), ..., fM (x)),

Subject to x ∈ S,

S = {x ∈ Rm : h(x) = 0,д(x) ≥ 0};

where S is the set of inequality and equality constraints and the

functions fi are objective or fitness functions. In multi-objective
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Figure 1: Overview of our proposed IC-NSGA-II approach.

optimization, the quality of a solution is recognized by dominance.

The set of feasible solutions that are not dominated by any other

solution is called Pareto-optimal or Non-dominated solution set.

NSGA-II is a multi-objective evolutionary algorithm operating

on a population of candidate solutions which are evolved toward

the Pareto-optimal solution set. NSGA-II uses an explicit diversity-

preserving strategy together with an elite-preservation strategy

[12]. As described in Algorithm 1, the first iteration of the process

begins with a complete execution of adapted NSGA-II to our refac-

toring recommendation problem based on the fitness functions that

will be discussed later. At the beginning, a random population of

encoded refactoring solutions, P0, is generated as the initial parent

population. Then, the children population, Q0, is created from the

initial population using crossover and mutation. Parent and chil-

dren populations are combined together to form R0. Finally, a subset
of solutions is selected from R0 based on the crowding distance and

domination rules. This selection is based on elitism which means

keeping the best solutions from the parent and child population.

Elitism does not allow an already discovered non-dominated solu-

tion to be removed. This process is continued until the stopping

criteria is satisfied.

The results of the first execution of search algorithm are a set of

non-dominated solutions that will be clustered and then updated by

the users. After this interactions phase, the multi-objective search

algorithm will continue to run using the new constraints generated

at the cluster and solution levels.

3.1.1 Refactoring Solution Representation. A refactoring solution

is represented as a vector consists of an ordered sequence of mul-

tiple refactoring operations. Each refactoring operation includes

a refactoring action and its specific controlling parameters. The

refactoring types considered in our experiments are: Move Method,

Move Field, Extract Class, Encapsulate Field, Pull Up Field, Pull Up

Method, Push Down Field, Push Down Method, Extract SubClass,

Extract SuperClass. Refactoring operations are created or modified

randomly during the population initialization or mutation. Also, the

size of a solution vector which is the number of included refactoring

operation is randomly selected between lower and upper bound

values. Therefore, it is important to investigate the feasibility of a

solution and its operations using related pre- and post-conditions

[31]. These conditions ensure that the program will not break while

the behavior is preserved by the refactoring.

3.1.2 Fitness Functions. The fitness or objective function evaluates

a candidate solution and calculates its goodness degree to the con-

sidered problem. In order to measure the influence of a refactoring

solution on the software project, we utilized Quality Model for

Object-Oriented Design (QMOOD) [4]. This model is developed

based on international standard for software product quality mea-

surement. QMOOD is a comprehensive way to assess the software

quality and includes four levels. We employed the first two levels

known as "Design Quality Attributes" and "Object-oriented Design

Properties" to calculate our fitness functions (Reusability, Flexibil-

ity, Understandability, Functionality, Extendibility, Effectiveness,

Complexity, Cohesion, Coupling). The relative change of the quality

metric after applying the refactoring solution is considered as the

fitness function and can be expressed as:

FitnessFunctioni =
QM

af ter
i −QM

bef ore
i

QM
bef ore
i

(1)

whereQM
bef ore
i andQM

af ter
i are the value of the quality met-

ric i before and after applying a refactoring solution, respectively.

3.2 Phase 2: Clustering the Pareto Front of
Refactoring Solutions

The goal of this phase is to reduce the effort to investigate the

solutions in Pareto-optimal front. We try to group the solutions

based on their fitness function values without filtering or removing

any of them. In this way, the solutions can be categorized based

the similarity among them in the objectives space. Then, a repre-

sentative solution is identified from each partition to recommend

to the decision maker (center of the cluster). For this purpose we

used clustering analysis technique. Clustering is one of the most
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Algorithm 1: Interactive Clustering-based NSGA-II (IC-NSGA-II)

Input :Population Size (N ), Source Code

Output :Recommended Pareto-optimal Solutions

1 UserPreferences← ∅ ; /* Initiate Preference Parameters */

2 while ¬ The user is satisfied do
phase1 begin Multi-objective Refactoring

4 P1 ← InitializePopulation(N ,UserPreferences); /* User preferred random population */

5 EvaluateObjectives(P1,UserPreferences);

6 FastNonDominatedSort(P1);

7 Q1 ← SelectCrossoverMutate(P1,UserPreferences);

8 while ¬StoppingCondition() do
9 EvaluateObjectives(Q1,UserPreferences); /* User preferred evaluation */

10 Rt ← P1 ∪Q1;

11 Fronts=FastNonDominatedSort(Rt );

12 Pt+1 ← ∅;

13 i ← 1 ;

14 while |Pt+1 | + |Fronti | ≤ N do
15 CrowdingDistanceAssign(Fronti );

16 Pt+1 ← Pt+1 ∪ Fronti ;

17 i ← i + 1;

18 SortByRankAndDistance(Fronti );

19 Pt+1 ← Pt+1 ∪ Fronti [1 : (N − |Pt+1 |)];

20 Qt+1 ← SelectCrossoverMutate(Pt+1,UserPreferences) ; /* Customized GA Operator */

21 t = t + 1;

22 RecommendedSolutions← Qt+1;

phase2 begin Pareto Front Clustering
24 GMMClustering (RecommendedSolutions); /* Described in Algorithm 2 */

25 ClustersCenter ();

phase3 begin Interaction and User Preference
27 GetUserFeedBack (Clusters,Centers) ; /* Described in Algorithm 3 */

28 UserPreferences← ExtractPreferences ();

29 Return RecommendedSolutions;

important and popular unsupervised learning problems in Machine

Learning. It helps to find a structure in a set of unlabelled data in a

way that the data in each cluster are similar together while they

are dissimilar to the data in other clusters.

One of the challenges in cluster analysis is to define the optimal

number of clusters. Therefore, we need cluster validity index as a

measure of clustering performance. Different partitions is computed

and the ones that fits the data better are selected. The procedure of

Phase 2 is illustrated in Algorithm 2.

3.2.1 Calinski Harabasz (CH) Index. is an internal clustering vali-

dation measure based on two criteria: compactness and separation

[11]. CH evaluates the clustering results based on the average sum

of squares between and within clusters and it defines as follows:

CH =
(N − K)

(K − 1)

ΣKk=1 |ck | dist(ck , S)

ΣKk=1Σsi ∈ck dist(si , ck )
(2)

wheredist(a,b) is the Euclidean distance, ck and S are the cluster
and global centroids, respectively.

The first step in Pareto-front clustering is to execute the clustering

process with different number of components and to compute CH

score for each. The best number of clusters (K) is defined as the one

that achieves the highest CH score.

3.2.2 Gaussian Mixture Model (GMM). is a probabilistic model-

based clustering algorithm with which a mixture of k Gaussian

distributions is fitted on the data. GMM is soft-clustering approach

in which each data point is assigned a degree that it belongs to

each of the clusters. The parameters that need to fit are Mean (µk ),
Co-variance (Σk ), and Mixing coefficient (πk ).
GMM clustering begins by random initiation of parameters for K

components. Then, Expectation-Maximization (EM) algorithm [35]

is employed for parameter estimation. EM is an iterative process to

train the parameters and has two steps. In the expectation step, an
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Algorithm 2: Pareto-front Clustering
Input :Pareto-front solutions (S)
Output :Labeled solutions (LS),

Clusters Representative Solution (CR)

1 begin Calculate best number of clusters-K

2 for i ← 2 to 10 do
3 LS = GMMClustering (i, S);

4 Scorei=CalinskiHarabaszIndex(LS);

5 K←MaxScoreIdx();

6 begin GMMClustering (K,S)
7 µk , Σk ,πk ← Initialize-K-Gaussian();

/* Expectation-Maximization */

8 while ¬ converge do
9 γ (snk ) ← Expectation();

10 µk , Σk ,πk ←Maximization();

11 EvaluateLikelihood();

12 foreach sn ∈ S do
/* assigning cluster labels */

13 Ln ←MaxResponsibilityIdx(sn );

/* Find Clusters Representative */

14 foreach Cluster Ck do
15 CRk ←MaxDensity(snk ∈ Ck )

16 Return LS, CR;

assignment score to each Gaussian distribution, called "responsibil-

ity" or "membership weight", is determined for each solution point

as follow:

γ (znk ) =
πkN(sn |µk , Σk )∑K
i=1 πiN(sn |µi , Σi )

(3)

The responsibility coefficient will be used later for preference

extraction step. In the maximization step, the parameters of each

Gaussian are updated using the computed responsibility coeffi-

cients.

3.3 Phase 3: Developers Interaction and
Preferences Extraction

Our tool presents the results of clustering-based multi-objective

refactoring in a user-friendly way via interactive colored graphical

charts and tables as shown in Figure 2.

The developer has the ability to explore the recommended so-

lutions and clusters efficiently and discover the shared underlying

characteristics of the solutions in a cluster at a glance. The user may

only investigate the cluster’s center solution or search further and

examine the solutions inside a cluster of interest. Every refactoring

operation can be evaluated by the programmer. As described in

Algorithm 3, We translate each evaluation feedback to a continuous

score in the range of [-1,1].

The user can interact with the tool at the solution level by ac-

cepting / rejecting / modifying specific refactoring or the cluster

Figure 2: Interactive solution charts in our tool.

Algorithm 3: Interaction and User Preferences

Input :Labeled solutions (LS)

Output :Preferred Cluster (PC),

Preference Parameters=[

CWP(Classes Weighted Probability,

RWP(Refactorings Weighted Probability),

RS(Reference Solution)]

begin User Interaction and Feedback

while ¬ interaction is done do
Feedbacki ← UserEvaluation(Re fi );

Vi ← Score(Feedbacki );

/* Solutions and clusters score */

Scoresi ← Average(Vi ∈ si );

Scoreck ← Average(Scoresi ∈ ck );

PC← cluster with Max score;

begin User Preference Extraction

/* Representative solution as reference */

RS← CRPC ;

foreach [re fi , cli ] ∈ PC do
RWPp ← AverageWeightedFreq(re fp );

CWPq ← AverageWeightedFreq(clq );

Return PC, Preference Parameters[];

level by specifying a specific cluster as the region of interest. Af-

ter the interaction is done and the user decides to continue to the

next round, the score of each solution and cluster are computed.

Solution score (Scoresi ) is defined as the average of all refactoring

operations score exists in the solution vector. Similarly, Cluster

score (Scoreck ) is calculated as the average of all solutions score

assigned to the cluster. Then, the cluster achieved the highest score
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among all clusters is considered as the user preferred partition in

Pareto-front space from which the preference parameters will be

extracted.

The next step of phase 3 of our proposed approach is to extract

user preference parameters from the interaction step. We consider

the representative solution of the preferred cluster as the reference

point. Then, we compute the weighted probability of refactoring

operations (RWP ) and target classes of the source code (CWP ).
Note that only the name of refactoring action without its associated

controlling parameters is matched. Assuming the selected cluster’s

index is j, these parameters can be computed as follow:

RWPp =

∑
si ∈c j γi j × (|rp ∈ si |)∑

rm ∈Ref
∑
si ∈c j γi j × (|rm ∈ si |)

(4)

CWPq =

∑
si ∈c j γi j × (|clq ∈ si |)∑

clm ∈Cls
∑
si ∈c j γi j × (|clm ∈ si |)

(5)

where si is the solution vector, γi j is the membership coefficient

of solution i to the cluster j, r is refactoring action, Re f is the set

of all refactoring operations, and Cls is the set of all classes in the

source code.

3.4 Applying Preference Parameters
If the user decides to continue the search process, then the prefer-

ence parameters will be applied during the execution of different

components of multi-objective optimization as described in the

following:

• Preference-based initial population: The solutions from pre-

ferred clusters will make up the initial population of next

iteration as a means of customized search starting point. In

this way, we initiate the search from the region of interest

rather than randomly. New solutions need to be generated

to fill and achieve the pre-defined population size. Instead of

random creation of the refactoring operations (refactoring

action and target class) based on a unify probability distribu-

tion, we utilize RWP and CWP as a probability distribution.

• Preference-based mutation: For this operator, similarly, if a

solution is selected to mutate, we give a higher chance to

refactoring operations of interest to replace the chosen one

based on the probability distribution RWP .
• Preference-based selection: the selection operator tends to

filter the population and assign higher chance to the more

valuable ones based on their fitness values. In order to con-

sider the user preferences in this process, we adjusted this

operator to include closeness to the reference solution as an

added measure of being a valuable individual of the popula-

tion. That means the chance of selection is related to both

fitness values and distance to the region of interest as:

Chance(si ) ∝
1

dist(si ,CRj )
, Fitness(si ) (6)

where dist() indicates Euclidean distance and CRj is the

representative solution of cluster j.

The above-mentioned customized operators aid to keep the sto-

chastic nature of the optimization process and at the same time take

Table 1: Statistics of the studied systems.

System Release #Classes KLOC
ArgoUML v0.3 1358 114

JHotDraw v7.5.1 585 25

GanttProject v1.11.1 245 49

UTest v7.9 357 74

Apache Ant v1.8.2 1191 112

Azureus v2.3.0.6 1449 117

the user preferred refactoring and target code locations (classes)

into account.

4 EVALUATION
In this section, we first present our research questions and val-

idation methodology followed by experimental setup. Then, we

describe and discuss the obtained results. The data of our exper-

iments including a tool demo and the complete statistical results

can be found in the following link [1].

4.1 Research Questions
We defined three main research questions to measure the correct-

ness, relevance and benefits of our interactive clustering-based

multi-objective refactoring tool comparing to existing approaches

that are based on interactive mutli-objective search [29], fully auto-

mated multi-objective search (Ouni et al.) [34] and fully automated

deterministic tool not based on heuristic search (JDeodorant) [16].

The research questions are as follows:

• RQ1: Refactorings relevance. To what extent can our ap-

proach make meaningful recommendations compared to

existing refactoring techniques?

• RQ2: Interactive clustering relevance. To what extent

can our clustering-based approach efficiently reduce the

interaction effort?

• RQ3: Impact. How do programmers evaluate the useful-
ness of our tool (questionnaire)?

4.2 Experimental Setup
To address the different research questions, we used the six systems

in Table 1. We selected these six systems because of their size, have

been actively developed over the past 10 years and extensively

analyzed by the competitive tools considered in this work. UTest
1

is a project of our industrial partner used for identifying, reporting

and fixing bugs. We selected that system for our experiments since

three programmers of that system agreed to participate in the ex-

periments and they are very knowledgeable about refactoring since

they are part of the maintenance team. Table 1 provides information

about the size of the subject systems (in terms of number of classes

and KLOC).

To answer RQ1, we asked a group of 14 active programmers to

identify and manually evaluate the relevance of the best refactor-

ings sequence that they found using four tools. These tools are

our IC-NSGA-II approach, an existing interactive multi-objective

refactoring tool [29] (without the clustering feature) and two fully-

automated refactoring tools by the means of Ouni [34] and JDeodor-

ant [16]. Ouni [34] proposed a multi-objective refactoring formula-

tion based on NSGA-II that generates a solution to maximize the

design coherence and refactorings reuse from previous releases.

1
Company anonymized for double-blind.
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Table 2: Selected programmers.

System #Subjects Avg. Prog. Exp. Avg. Refactoring Exp.
ArgoUML 4 10 High

JHotDraw 4 11.5 Very High

Azureus 4 9 Medium

GanttProject 4 10.5 High

UTest 7 13.5 Very High

Apache Ant 4 12 Very High

JDeodorant [16] is an Eclipse plugin to detect bad smells and apply

refactorings. As JDeodorant supports a lower number of refactoring

types with respect to the ones considered by our tool, we restrict our

comparison with it to these refactorings. Mkaouer [29] proposed

a tool for interactive multi-objective refactoring but the interac-

tions were limited to the refactorings (accept/reject) and there is

no clustering of the Pareto front or learning mechanisms from the

interaction data. We used these three competitive tools to eval-

uate the benefits of the clustering feature in helping developers

identifying relevant refactorings.

We preferred not to use the antipatterns and internal quality

indicators as proxies for estimating the refactorings relevance since

we the developers manual evaluation already includes the review

of the impact of suggested changes on the quality. Furthermore, not

all the refactorings that improve any quality attributes are relevant

to the developers, which is one of the main motivations of this

work. The only rigorous way to evaluate our the relevance of our

tool is the manual evaluation of the results by active developers.

Participants were first asked to fill out a pre-study questionnaire

containing five questions. The questionnaire helped to collect back-

ground information such as their role within the company, their

programming experience, and their familiarity with software refac-

toring. In addition, all the participants attended one lecture of two

hours on software refactoring by the organizers of the experiments.

The details of the selected participants can be found in Table 2 in-

cluding their programming experience, familiarity with refactoring,

etc. Each participant was asked to assess the meaningfulness of the

refactorings recommended after using two out of the four tools on

two different systems to avoid the training threat. The participants

did not only evaluate the suggested refactorings but were asked to

configure, run and interact with the tools on the different systems.

The only exceptions are related to the participants from the indus-

trial partner where only two out of the three agreed to evaluate

an additional system to UTest while the third only reviewed the

refactoring recommendations on the industrial software. Thus, the

total number of evaluations of the different tools is 27. We assigned

the tasks to the participants according to the studied systems, the

techniques to be tested and developers’ experience. Each of the

four tools has been evaluated at least one time on every of the six

systems.

To answer RQ2, we measured the time (T ) that developers spent
to identify the best refactoring strategies based on their preferences

and the number of refactorings (NR). Furthermore, we qualitatively

evaluated the impact of the interactions with the users on the Pareto

front to better converge towards a "region of interests" reflecting

their preferences. For this research question, we decided to limit

the comparison to only the interactive multi-objective work of

Mkaouer et al. [29] since it is the only one that offers interaction

with the users and it will help us understand the real impact of

the clustering feature (not supported by [29]) on the refactoring

recommendations and interaction effort.

To answer RQ3, we asked the participants to use our tool during

a period of two hours on the different systems and then we collected

their opinions based on a post-study questionnaire. To better un-

derstand subjects’ opinions with regard to usefulness and usablility

of our approach in a real setting, the post-study questionnaire was

given to each participant after completing the refactoring tasks

using our interactive approach and all the techniques considered

in our experiments. The questionnaires collected the opinions of

the participants about their experience in using our tool compared

to existing manual, interactive and fully-automated refactoring

techniques.

4.3 Statistical Tests and Parameters Setting
We used one-way ANOVA statistical test with a 95% confidence

level (α = 5%) to find out whether our sample results of different

approaches are different significantly. Since one-way ANOVA is an

omnibus test, A statistically significant result determines whether

three or more group means differ in some undisclosed way in the

population. One-way ANOVA is conducted for the results obtained

from each software project to investigate and compare each per-

formance metric (dependent variable) between various studied al-

gorithms (independent variable). We test the null hypothesis (H0)

that population means of each metric are equal for all methods

against the alternative (H1) that they are not all equal and at least

one method population mean is different.

One-way ANOVA does not report the size of the difference.

Therefore, we calculated the Vargha-Delaney Ameasure [36] which

is a measure of the effect size (strength of association) and it esti-

mates the degree of association between the independent factor and

dependent variable for the sample. Eta squared is the proportion

of the total variance that is attributed to a factor (the "refactoring

methods" in this study).

A detailed description of the statistical tests results can be found

in this link [1].

Parameter setting influences significantly the performance of

a search algorithm on a particular problem [3]. For this reason,

for each algorithm and for each system, we perform a set of ex-

periments using several population sizes: 50, 100, 150, 200, 250

and 30. The stopping criterion was set to 100,000 evaluations for

all search algorithms in order to ensure fairness of comparison

(without counting the number of interactions since it is part of the

users decision to reach the best solution based on his preferences).

The other parameters’ values were fixed by trial and error and are

as follows: crossover probability = 0.6; mutation probability = 0.5

where the probability of gene modification is 0.4. In order to have

significant results, for each couple (algorithm, system), we use the

trial and error method [20] in order to obtain a good parameter

configuration.

4.4 Results
Results for RQ1: Refactorings relevance.We report the results

of our empirical qualitative evaluation (MC) in Figure 3 based on

the manual checking of the best solutions identified by each tool.

As reported in this figure, the majority of the refactoring solu-

tions recommended by our interactive clustering-based approach
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Figure 3: The median manual evaluation scores, MC, on the
six systems with 95% confidence level (α = 5%) based on a
one-way ANOVA statistical test

were correct and validated by the participants on the different sys-

tems. On average, for all of our ten studied projects, 86% of the

proposed refactoring operations are considered as semantically

feasible, improve the quality and are found to be useful by the soft-

ware developers of our experiments. The remaining approaches

have an average of 70%, 63% and 52% respectively for Mkoauer

et al. (interactive multi-objective approach), Ouni et al. (fully au-

tomated multi-objective approach) and JDeodorant (deterministic

non-search based approach).The highest MC score is 93% for the

Gantt project and the lowest score is 80% for JHotDraw. Thus, it

is clear that the results are independent of the size of the systems

and the number of recommended refactorings as detailed in RQ2

as well. Both of the interactive tools outperformed fully-automated

ones which shows the importance of integrating the human in the

loop when refactoring a system. Furthermore, it is clear that adding

the clustering feature to enable the developers to select a region of

interests based on which quality objectives they want to prioritize

and what refactoring solutions they partially liked.

A qualitative analysis of the results show that several interac-

tions with the developers helped to reduce the search space by

avoiding the refactorings that were rejected by them and their lo-

cation. We found that the best final refactoring solutions identified

by the developers after several interactions with our tool cannot be

recommended by the remaining approaches. In fact, all these solu-

tions are obtained either after 1) eliminating refactorings applied

to specific code locations not relevant to the programmers’ context

(something that cannot be learned with the interaction component)

or 2) emphasizing specific cluster that prioritizes some objectives

and penalizes others. For instance, the developers from the indus-

trial partner found several of the refactorings that are recommended

by Ouni et al. and JDeodorant as non relevant, while they could be

correct, because it may refactor a stable code or classes that are not

of their interest to be refactored.

All the results based on the MC metric on the different systems

were statistically significant with 95% of confidence level. Regarding

the effect size, we found that our approach is better than all the other

algorithms with an A effect size higher than 0.92 for ArgoUML,

GanttProject, UTest and Apache Ant; and an A effect size higher

than 0.83 for JHotDraw and Azureus.

Table 3: Median time, in minutes, and number of refactor-
ings proposed by both interactive approaches on the differ-
ent six systems

Techniques

Systems IC-NSGA-II (T,NR) Mkaouer et al. (T,NR)

ArgoUML 100 29 124 34

JHotDraw 25 27 67 52

Azureus 70 24 125 35

GanttProject 36 30 86 39

UTest 46 52 83 75

Apache Ant 51 26 147 35

Results for RQ2: Interactive clustering relevance. Table 3
summarizes the time, in minutes, and the number of refactorings

in the most relevant solution found using our tool, IC-NSGA-II,

and the interactive approach of Mkaouer et al. [29]. All the partici-

pants spent less time to find the most relevant refactorings on the

different systems comparing to Mkaouer et al. [29]. For instance,

the average time is reduced by over 60% for the case of Apache

Ant from 147 minutes to just 51 minutes. The time includes the

execution of IC-NSGA-II and the different phases of interaction

until that the developer is satisfied with a specific solution. It is

clear as well that the time reduction is not correlated with the

number of recommended refactorings. For instance, the deviation

between IC-NSGA-II and Mkaouer et al. for Apache Ant in terms of

number of recommended refactorings is limited to 9 (26 vs 35) but

the time reduction is almost 100 minutes. However, it is clear that

our approach reduced as well the number of recommended refac-

torings comparing to Mkaouer et al. while increasing the manual

correctness as described in RQ1. The highest number of refactorings

was observed on the industrial system with 52 refactorings using

IC-NSGA-II and 75 refactorings using Mkaouer et al. This could

be explained by the fact that the original developers can better

understand the possible relevance of the recommended refactor-

ings comparing the remaining participants’ evaluation on the open

source systems.

Figure 4 shows a qualitative example extracted from our exper-

iments using IC-NSGA-II on the Gantt project with a population

size of 100 based on three phases of interactions. After the gen-

eration of the Pareto front, the clustering feature identified three

main different clusters for the two objectives selected by the devel-

oper (extendibility and effectiveness). During the first phase, the

developer selected the cluster with id 0 as the preferred one after

exploring several refactoring solutions in that cluster including

the center of the cluster. Thus, the next iterations of IC-NSGA-II

prioritized that "region of interest" so more refactoring options

were generated around the previously selected cluster. Then, since

the user selected again a cluster maximizing these two objectives

(cluster with id 1) more refactoring options in the next iterations

until that a good refactoring sequence is selected.

Results for RQ3: Impact.We summarize in the following the

feedback of the developers based on the post-study questionnaire.

12 out the 14 participants mention that our interactive clustering-

based refactoring tool is faster and much easier to use than the
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Figure 4: Illustration of the refactoring solutions convergence to a region of interest after two rounds of interactions extracted
from the experiments on the Gantt Project.

interactive multi-objective tool of Mkaouer et al. [29] to identify

quickly relevant refactorings based on their interests. For instance,

the comment of one participant is the following : "I believe the
addition of the clustering algorithm really helped identify a solution
quicker. It was difficult to decide between similar refactoring solutions
using the non-clustering version of the tool. The cluster centers helped
focus the attention to just a few solutions, which were easy to choose
between." A similar observation is valid when comparing our tool

to the fully-automated multi-objective refactorings tool of Ouni et

al. [34] where 9 out of the 14 participants highlighted the difficulty

to select one relevant refactoring solution from a large set of non-

dominated solutions and without offering any flexibility to update

them. One example of received comments is "The main advantage of
this tool is instead of looking so many refactoring solutions manually
this tool helps us to find the best solution based on objective selecting
the center of the different clusters which provide the good refactoring
recommendations."

All the developers mentioned the high usability of the tool and

the different options that are offered comparing to deterministic

tools like JDeodorant. In addition, they did not appreciate a lot the

long list of refactoring suggested by Ouni et al. and JDeodorant

since they want to take control of modifying and rejecting some

refactorings. In addition, the validation of this long list of refactor-

ings is time-consuming. Thus, they appreciate that our tool suggests

refactoring one by one and update the list based on the feedback

of developers. 13 participants commented on the minimum effort

required to understand the impact of the proposed refactorings on

the quality and to identify a relevant solution using the clusters

comparing all the three remaining tools: "Refactoring with clustering
reduces the time of the analysis of the objectives. It keeps the similar
type of classes or patterns in the same cluster and dissimilar patterns

in another cluster." All the participants found as well our tool helpful
for both floss refactoring, to maintain a good quality design and also

for root canal refactoring to fix some quality issues such as code

smells.

5 THREATS TO VALIDITY
Conclusion validity. The parameter tuning of the different op-

timization algorithms used in our experiments creates another

internal threat that we need to evaluate in our future work. The

parameters’ values used in our experiments are found by trial-and-

error [19]. However, it would be an interesting perspective to design

an adaptive parameter tuning strategy [2] for our approach so that

parameters are updated during the execution in order to provide

the best possible performance.

Internal validity. The variation of correctness and speed be-

tween the different groups when using our approach and other

tools such as JDeodorant. In fact, our approach may not be the only

reason for the superior performance because the participants have

different programming skills and familiarity with refactoring tools.

To counteract this, we assigned the developers to different groups

according to their programming experience so as to reduce the

gap between the different groups and we also adapted a counter-

balanced design. Regarding the selected participants, we have taken

precautions to ensure that our participants represent a diverse set

of software developers with experience in refactoring, and also that

the groups formed had, in some sense, a similar average skill set in

the refactoring area.

Construct validity. The different developers involved in our

experiments may have divergent opinions about the recommended

refactorings in terms of relevance which may impact our results.
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External validity. The first threat is the limited number of

participants and evaluated systems, which externally threatens the

generalizability of our results. In addition, our study was limited

to the use of specific refactoring types. Future replications of this

study are necessary to confirm our findings.

6 RELATEDWORK
Hall et al. [18] treated software modularization as a constraint sat-

isfaction problem. The idea of this work is to provide a baseline

distribution of software elements using good design principles (e.g.

minimal coupling and maximal cohesion) that will be refined by

a set of corrections introduced interactively by the designer. The

approach, called SUMO (Supervised Re-modularization), consists

of incrementally feeding domain knowledge into the remodular-

ization process. The process is performed by the designer in terms

of constraints that can be introduced to refine the current modu-

larizations. Initially, the system begins with generating a module

dependency graph from an input system. This dependency is based

on the correlation between software elements (coupling between

methods, shared attributes etc.). Possible modularizations are then

generated from the graph using multiple simulated authoritative

decompositions. Then, using a clustering technique called Bunch,

an initial set of clusters is generated that serves as an input to

SUMO. The SUMO algorithm provides a hypothesized modulariza-

tion to the user, who will agree with some relations, and disagree

with others. The user’s corrections are then integrated into the

modularization process, to generate a better modularization.

Dig [13] proposes an interactive refactoring technique to im-

prove the parallelism of software systems. However, the proposed

approach did not consider learning from the developers’ feedback

and focused on making programs more parallel. Bavota et al. [6]

presented the adoption of single objective interactive genetic algo-

rithms in software re-modularization process. The main idea is to

incorporate the user in the evaluation of the generated remodular-

izations. Interactive Genetic Algorithms (IGAs) extend the classic

Genetic Algorithms (GAs) by partially or entirely involving the

user in the determination of the solution’s fitness function. The

basic idea of the Interactive GA (IGA) is to periodically add a con-

straint to the GA such that some specific components shall be put

in a given cluster among those created so far. After analyzing the

current modularization solutions, the user provides feedback in

terms of constraints dictating for example, that a specific element

needs to be in the same cluster as another one. Although user feed-

back is important in guaranteeing convergence, it is essential not

to overload the user by asking for a decision about all the current

relationships between elements, especially for a large system.

A recent study [25] extended a previous work [29] to propose an

interactive search based approach for refactoring recommendations.

The developers have to specify a desired design at the architecture

level then the proposed approach try to find the relevant refactor-

ings that can generate a similar design to the expected one. In our

work, we do not consider the use of a desired design, thus develop-

ers are not required to manually modify the current architecture of

the system to get refactoring recommendations. Furthermore, de-

velopers maybe interested to change the architecture mainly when

they want to introduce an extensive number of refactorings that

radically change the architecture to support new features.

None of the above interactive studies considered reducing the

interaction effort with developers which is an important step to

improve the applicability of refactoring tools as highlighted in the

survey with developers.

7 CONCLUSIONS AND FUTUREWORK
We proposed, in this paper, an interactive clustering-based recom-

mendation tool for software refactoring that reduces the effort of

improving the quality of software systems. The exploration of the

non-dominated refactoring solutions is implicitly performed based

on the interaction with the developers. The feedback received from

the developers and the clustering of non-dominated refactoring

solutions are used to reduce the search space and converge to better

solutions. To evaluate the effectiveness of our tool, we conducted an

evaluation with 14 software developers who evaluated the tool and

compared it with the state-of-the-art refactoring techniques. Our

evaluation results provide strong evidence that our tool improves

the applicability of software refactoring, and proposes a novel way

for software developers to refactor their systems interactively with

reasonable effort.

Future work involves validating our technique with additional

refactoring types, programming languages and programmers in or-

der to conclude about the general applicability of our methodology.

Furthermore, we only focused, in this paper, on the recommendation

of refactorings. We plan to extend the interactive clustering-based

approach to others related software maintenance problems such

as regression testing and bugs localization. We will also work on

making the refactoring recommendations more personalized based

on the profile of programmers by learning their preferences.
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