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Abstract—Successful software products evolve through a process of continual change. However, this process may weaken the

design of the software and make it unnecessarily complex, leading to significantly reduced productivity and increased fault-proneness.

Refactoring improves the software design while preserving overall functionality and behavior, and is an important technique in

managing the growing complexity of software systems. Most of the existing work on software refactoring uses either an entirely manual

or a fully automated approach. Manual refactoring is time-consuming, error-prone and unsuitable for large-scale, radical refactoring.

On the other hand, fully automated refactoring yields a static list of refactorings which, when applied, leads to a new and often hard

to comprehend design. Furthermore, it is difficult to merge these refactorings with other changes performed in parallel by developers.

In this paper, we propose a refactoring recommendation approach that dynamically adapts and interactively suggests refactorings to

developers and takes their feedback into consideration. Our approach uses NSGA-II to find a set of good refactoring solutions that

improve software quality while minimizing the deviation from the initial design. These refactoring solutions are then analyzed to extract

interesting common features between them such as the frequently occurring refactorings in the best non-dominated solutions. Based

on this analysis, the refactorings are ranked and suggested to the developer in an interactive fashion as a sequence of transformations.

The developer can approve, modify or reject each of the recommended refactorings, and this feedback is then used to update the

proposed rankings of recommended refactorings. After a number of introduced code changes and interactions with the developer,

the interactive NSGA-II algorithm is executed again on the new modified system to repair the set of refactoring solutions based on the

new changes and the feedback received from the developer. We evaluated our approach on a set of eight open source systems and

two industrial projects provided by an industrial partner. Statistical analysis of our experiments shows that our dynamic interactive

refactoring approach performed significantly better than four existing search-based refactoring techniques and one fully-automated

refactoring tool not based on heuristic search.

Index Terms—Search-based software engineering, Refactoring, interactive optimization, software quality

Ç

1 INTRODUCTION

SUCCESSFUL software products evolve through a process
of continual change. However, this process may weaken

the design of the software and make it unnecessarily
complex, leading to significantly reduced productivity,
increased fault-proneness and cost of maintenance, and
has even led to projects being canceled. Many studies
report that software maintenance activities consume up to
90 percent of the total cost of a typical software project. It
has also been shown that software developers typically

spend around 60 percent of their time in understanding the
code they are maintaining [1].

Clearly, software developers need better ways to manage
and reduce the growing complexity of software systems and
improve their productivity. The standard solution is refactor-
ing, which involves improving the design structure of the
software while preserving its functionality [2]. There has been
muchwork done on various techniques and tools for software
refactoring [2], [3], [4], [5] and these approaches can be classi-
fied into three main categories: manual, semi-automated and
fully-automated approaches, as outlined below.

In manual refactoring, the developer refactors with no tool
support at all, identifying the parts of the program that
require attention and performing all aspects of the code trans-
formation by hand. It may seem surprising that a developer
would eschew the use of tools in this way, but Murphy-
Hill et al. [6] found in their empirical study of the developers
usage of the Eclipse refactoring tooling that in almost
90 percent of cases the developers performed refactorings
manually and did not use any automated refactoring tools.

Kim et al. [7] confirmed this observation, finding that the
interviewed developers from Microsoft preferred to perform
refactoring manually in 86 percent of cases. In spite of its
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apparent popularity, manual refactoring is very limited
however; several studies have shown that manual refactoring
is error-prone, time-consuming, not scalable and not useful
for radical refactoring that requires an extensive application
of refactorings to correct unhealthy code [8].

By semi-automated refactoring, we refer to the situation
where a developer uses the standard refactoring tooling
available in IDEs such as Eclipse and Netbeans to apply the
refactorings they deem appropriate. Murphy-Hill et al. [6]
analyzed data collected from 13,000 Java developers using
the Eclipse IDE over a 9-month period, finding that the
trivial Rename refactoring accounted for almost 72 percent
of the refactorings performed, while the combination of
Rename, Extract Method/Variable and Move accounted for
89.3 percent of the total number of refactorings performed.

In fully-automated refactoring, a search-based process is
employed to find an entire refactoring sequence that improves
the program in accordancewith the employed fitness function
(involving e.g., code smells, software quality metrics etc.).
This approach is appealing in that it is a complete solution
and requires little developer effort, but it suffers from several
serious drawbacks as well. First, the recommended refactor-
ing sequence may change the program design radically and
this is likely to cause the developer to struggle to understand
the refactored program [9]. Second, it lacks flexibility since the
developer has to either accept or reject the entire refactoring
solution. Third, it fails to consider the developer perspective,
as the developer has no opportunity to provide feedback on
the refactoring solution as it is being created. Furthermore,
as development must halt while the refactoring process
executes, fully-automated refactoring methods are not useful
for floss refactoring where the goal is tomaintain good design
quality while modifying existing functionality. The develop-
ers have to accept the entire refactoring solution even though
they prefer, in general, step-wise approaches where the
process is interactive and they have control of the refactorings
being applied [10].

In light of the discussion above, we propose an approach
to refactoring recommendation that (1) provides refactor-
ing-centric interaction, (2) enables refactoring and develop-
ment to proceed in parallel and (3) collects information in a
non-intrusive manner that can be used to inform dynami-
cally the refactoring process. We postulate that enabling
the developer to interact with the refactoring solution is
essential both to creating a better refactoring solution, and
to creating a solution that the developer understands and
can work with.

We propose that this interaction should be centered on
refactorings, which are of direct interest to a developer,
rather than code smells or software quality metrics, which
have been found not to be strong drivers of the refactoring
process in practice [11], [12]. Refactoring and development
must be allowed to proceed in parallel, as this is part of test-
driven development [13] and the Agile approach to soft-
ware development in general [14]. Thus the developer can
continue to extend the program with new functionality or
bug fixes while the refactoring recommendation process
executes. Finally, any development carried out is used
where possible to improve the refactoring recommenda-
tions, e.g., the developer is more likely to value refactorings
that affect recently updated code.

Our goal is to present the developer with few refactorings
at a time, allowing them to accept / reject/ modify each
refactoring as they see it. Thus, developers are not forced to
either accept or run the entire refactoring operations or reject
them and the developers may not control the number the
applied refactorings. In our approach, the developers can
apply operations to the extent that they want. Finding a
refactoring solution is a naturally multi-objective problem, so
there is not one single ”best” solution, rather there is a set of
non-dominated solutions, the so-called Pareto front [15].

In this paper, we use the multi-objective evolutionary
algorithm NSGA-II [15] to create the Pareto front, using a
fitness function that aims to improve software quality metrics
while maintaining design coherence and reducing the num-
ber of recommended refactorings. The question we face is
how to choose one solution from this front to present to the
developer? The traditional approach is to seek a ”knee point”
on the front, but this ignores the fact that developers have
their own refactoring priorities and may prefer a refactoring
solution elsewhere on the front. To this end,we propose, for the
first time in search-based software refactoring, the use of innoviza-
tion (innovation through optimization) [16] to analyze and explore
the Pareto front interactively and implicitly with the developer.
Innovization is a technique that seeks interesting commonali-
ties among the solutions of the Pareto front with the aim of
developing a deeper understanding of the problem.

Our innovization algorithm starts by finding the most
frequently-occurring refactorings among the set of non-
dominated refactoring solutions. Based on this analysis, a
complete refactoring solution is chosen from the front
that best matches the most frequently-occurring refactor-
ings, i.e., one that best represents the entire front in some
sense. The recommended refactorings are then ranked and
suggested to the developer one by one.

The developer can approve, modify or reject each
suggested refactoring. Each such action by the developer is
fed back into the search process. For example, if the developer
rejects a refactoring, the search process will subsequently
avoid this refactoring in creating new solutions. After the
software has been changed to some degree, i.e., the developer
has changed it by adding new functionality, fixing some bugs
or applying some refactorings and/or has provided feedback
by rejecting a number of refactorings, NSGA-II will continue
to execute in the new modified context to repair the set
of good refactoring solutions based on the updated code and
the feedback received from the developer. The feedback
received from the developers will be also used as a set of new
constraints to consider for the next iterations of NSGA-II.
The algorithm will avoid, for example, including rejected
refactorings by the developer when generating new solutions
or repairing existing ones. However, the algorithm is not
based on simply discarding all refactoring suggestions
rejected by developer since adding new constraints to reduce
the search space may make the current recommended refac-
toring solutions invalid.

We implemented our proposed approach and evaluated
it on a set of eight open source systems and two industrial
systems provided by our industrial partner, the Ford Motor
Company. Statistical analysis of our experiments showed
that our proposal performed significantly better than four
existing search-based refactoring approaches [17], [18], [19],
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[20] and an existing refactoring tool not based on heuristic
search, JDeodorant [21]. In our qualitative analysis, we found
that the software developers who participated in our experi-
ments confirmed the relevance of the suggested refactorings
and the flexibility of the tool in modifying and adapting the
suggested refactorings.

This paper builds on our previouswork [22] extending it in
several ways: (1) the interaction mechanism is improved, we
define a new ranking function and different algorithm to
repair non-dominated solutions after interactions with devel-
opers, (2) ten software applications are studied rather than
five, (3) the number of participants in the experiments is
doubled from 11 to 22, (4) an entirely new set of experimental
results are presented and analyzed in far greater detail, (5) a
comparisonwith a larger set of existing refactoring techniques
is included.

It also extends our previous study [9] wherewe proposed a
fully-automated, multi-objective approach to find the best
refactoring solutions that improve software quality metrics
and reduce the number of recommended refactorings. In [9],
we did not consider any developer interaction (fully-
automated approach) and did not update/repair refactoring
solutions based on new code changes introduced by develop-
ers. A recent study [45] extended our previous work [22] to
propose an interactive search based approach for refactoring
recommendations. The developers have to specify a desired
design at the architecture level then the proposed approach
try to find the relevant refactorings that can generate a similar
design to the expected one. In our work, we do not consider
the use of a desired design, thus developers are not required
to manually modify the current architecture of the system to
get refactoring recommendations.

The primary contributions of this paper can be summa-
rized as follows:

1) The paper introduces a novel interactive way to
refactor software systems using innovization and
interactive dynamic multi-objective optimization.
The proposed technique supports the adaptation of
refactoring solutions based on developer feedback
while also taking into account other code changes
that the developer may have performed in parallel
with the refactoring activity.

2) We propose an implicit exploration of the Pareto front
of non-dominated solutions based on our novel
interactive approach that can help software develop-
ers to use multi-objective optimization for software
engineering problems, avoiding the necessity for
manual exploration of the Pareto front to find the best
trade-off between the objectives.

3) The paper reports the results of an empirical study on
an implementation of our approach. The obtained
results provide evidence to support the claim that our
proposal is more efficient, on average, than existing
refactoring techniques based on a benchmark of eight
open source systems and two industrial projects.
The paper also evaluates the relevance and usefulness
of the suggested refactorings for software developers
in improving the quality of their systems.

The remainder of this paper is structured as follows.
Section 2 presents the relevant background details. Section 3

describes our novel approach to interactive code refactoring
while the results obtained from our experiments are pre-
sented and discussed in Sections 4 and 5. Threats to validity
are discussed in Section 7. Section 7 provides an account of
related work. Finally, in Section 8, we summarize our con-
clusions and present some ideas for future work.

2 BACKGROUND

In this section,wedescribe the required background to under-
stand the proposed approach. First, we give an overview
about software refactoring. Then, several definitions related
to interactive and dynamic multi-objective optimization are
described.

2.1 Software Refactoring

Refactoring is defined as the process of improving the code
after it has been written by changing its internal structure
without changing its external behavior. The idea is to
reorganize variables, classes and methods to facilitate future
adaptations and enhance comprehension. This reorganiza-
tion is used to improve different aspects of the software
quality such as maintainability, extensibility, reusability,
etc. Some modern Integrated Development Environments
(IDEs), such as Eclipse, Netbeans, provide support for
applying the most commonly used refactorings, e.g., move
method, rename class, etc.

In order to identify which parts of the source code need to
be refactored, most of the existing work relies on the notion of
bad smells (e.g., Fowler’s textbook [23]), also called design
defects or anti-patterns. In this paper, we assume that code
smells have been already detected, and need to be corrected.
Typically, code smells refer to design situations that adversely
affect the development of the software. When applying
refactorings to fix design defects, software metrics can be
used as an overall indication of the quality of the new design.
For instance, high intra-class cohesion and low inter-class
coupling usually indicate a high-quality system.

2.2 Interactive and Dynamic Evolutionary
Multi-Objective Optimization

In this section, we give a brief overview about two important
aspects in the Evolutionary Multi-objective Optimization
(EMO) [50] paradigm related to the: (1) Interaction with the
user and (2) Dynamicity of the problem.

Interacting with the human user means allowing the user
to inject his/her preferences into the computational search
algorithm and then using these preferences to guide the
search process. To express his/her preferences, the user
needs some preference modeling tools. The most commonly
used ones are [50]:

� Weights: Each objective is assigned a weighting
coefficient expressing its importance. The larger the
weight is, the more important the objective is.

� Solution ranking: The user is provided with a sample
of solutions (a subset of the current population) and is
invited to perform comparisons between pairs of
equally-ranked solutions in order to differentiate
between solutions that the fitness function regards as
equal.

� Objective ranking: Pairwise comparisons between
pairs of objectives are performed in order to rank the
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problem’s objectives where strong conflict exists
between a pair of objectives.

� Reference point (also called a goal or an aspiration
level vector): The user supplies, for each objective,
the desired level that he/she wishes to achieve. This
desired level is called aspiration level.

� Reservation point (also called a reservation level vector):
The user supplies, for each objective, the accepted
level that he/she wishes to reach. This accepted level
is called reservation level.

� Trade-off between objectives: The user specifies that the
gain of one unit in one objective is worth degradation
in some others and vice versa.

� Outranking thresholds: The user specifies the necessary
thresholds to design a fuzzy predicate modeling the
truth degree of the predicate solution x is at least as
good as solution y.

� Desirability thresholds: The user supplies: (1) an abso-
lutely satisfying objective value and (2) a marginally
infeasible objective value. These thresholds represent
the parameters that define the desirability functions.

Based on these preference modeling tools, we observe that
the goal of a preference-based EMO algorithm is to assign
different importance levels to the problem’s objectives with
the aim to guide the search towards the Region of Interest
(ROI) that is the portion of the Pareto Front that best matches
the user preferences. In fact, usually, the user is not interested
with the whole Pareto front and thus he/she is searching only
for his/her ROI from which the problem’s final solution will
be selected. Several preference-based EMO algorithms have
been proposed and used to solve real problems such as PI-
EMOA [46], iTDEA [47], NOSGA [48], DF-SMS-EMOA [49],
just to cite a few. There are several algorithmic challenges that
should be overcome such as the preservation of Pareto domi-
nance, the preservation of population diversity, the scalability
with the number of objectives, etc.

Until now, the user’s preferences are expressed and
handled in the objective space. It is important to highlight
that one of the original aspects of our work in this paper, as
detailed later, is allowing the user (a software developer) to
express his/her preferences in the decision space and then
handling these preferences to help the user finding the most
desired refactoring solution. Moreover, our approach helps
the user in eliciting his/her preferences, which is very impor-
tant for any preference-based EMO algorithm. These prefer-
ences are introduced implicitly bymoving between the Pareto
front of non-dominated solutions after obtaining feedback
from the user about just a few parts of the solution in order to
better understand his preferences. This implicit exploration of
the Pareto front will be detailed in the next section where we
describe the formulation of our refactoring problem.

The incorporation of user preferences may require the
handling of dynamicity issues related to the introduced
changes to the solution or the input (i.e., the software system).
Handling dynamicity in EMO means solving dynamic
problemswhere the objective functions and or the constraints
may change over time such due to, for example, the dynamic
nature of most of software evolution problems including
software refactoring. Applying evolutionary algorithms
(EAs) to solve Dynamic Multi-Objective Problems (DMOPs)
has received great attention from researchers thanks to the

adaptive behavior of evolutionary computation methods.
A DMOP consists of minimizing or maximizing an objective
function vector under some constraints over time. Its general
form is the following [50]:

Minfðx; tÞ ¼ ½f1ðx; tÞ; f2ðx; tÞ; . . . ; fMðx; tÞ�T
gjðx; tÞ � 0; j ¼ 1; . . .P ;
hkðx; tÞ ¼ 0; k ¼ 1; . . . ;Q;
xL
i � xi � xU

i ; i ¼ 1; . . . ; n;

8>><
>>:

where M is the number of objective functions, t is the time
instant, P is the number of inequality constraints, Q is the
number of equality constraints,XL

i and xU
i correspond respec-

tively to the lower and upper bounds of the variable xi .
A solution xi satisfying the ðP þQÞ constraints is said to be

feasible, and the set of all feasible solutions defines the feasible
search space denoted byV. In this formulation, we consider a
minimization MOP since maximization can be easily turned
into minimization based on the duality principle bymultiply-
ing each objective function by �1 and transforming the
constraints based on the duality rules.

The resolution of a MOP yields a set of trade-off solutions,
called Pareto optimal solutions or non-dominated solutions,
and the image of this set in the objective space is called the
Pareto front. Hence, the resolution of a MOP consists in
approximating the entire Pareto front. In the following,
we provide some background definitions related to multi-
objective optimization. It isworth noting that these definitions
remain valid in the case of DMOPs.

Definition 1 (Pareto Optimality). A solution x� 2 V is
Pareto optimal if 8x 2 V and I ¼ f1; . . . ;Mg either 8m 2 I
we have fmðxÞ ¼ fmðx�Þ or there is at least one m 2 I such
that fmðxÞ > fmðx�Þ.
The definition of Pareto optimality states that x� is Pareto

optimal if no feasible vector exists that would improve
some objectives without causing a simultaneous worsening
in at least one other objective.

Definition 2 (Pareto Dominance). A solution u¼ðu1; u2; . . . ;
unÞ is said to dominate another solution v ¼ ðv1; v2; . . . ; vnÞ
(denoted by fðuÞ � fðvÞ) if and only if fðuÞ is partially less
than fðvÞ. In other words, 8m 2 f1; . . . ;Mg we have fmðuÞ �
fmðvÞ and 9m 2 f1; . . . ;Mg where fmðuÞ < fmðvÞ.

Definition 3 (Pareto Optimal Set). For a given MOP fðxÞ,
the Pareto optimal set is P � ¼ fx 2 Vj:9x0 2 V; fðx0Þ �
fðxÞg.

Definition 4 (Pareto Optimal Front). For a given MOP fðxÞ
and its Pareto optimal set P �, the Pareto front is PF � ¼
ffðxÞ; x 2 P �g.
In the next section, we describe an overview of our

dynamic interactive refactoring approach then a detailed
formulation of our solution.

3 SEARCH-BASED INTERACTIVE
REFACTORING RECOMMENDATION

We first detail an overview of our approach and then we
provide the details of our problem formulation and the
solution approach.
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3.1 Approach Overview

The goal of our approach is to propose a new dynamic inter-
active way for software developers to refactor their systems.
The general structure of our approach is sketched in Fig. 1.

Our technique comprises two main components. The first
component is an offline phase, executed in the background,
whendevelopers aremodifying the source code of the system.
During this phase, the multi-objective algorithm, NSGA-II, is
executed for a number of iterations to find the non-dominated
solutions balancing the two objectives of improving the
quality, which corresponds to minimizing the number of
code smells, maximizing/preserving the semantic coherence
of the design and improving the QMOOD (Quality Model for
Object-Oriented Design) quality metrics, and the second
objective of minimizing the number of refactorings in the
proposed solutions.

The output of this first step of the offline phase is a set
of Pareto-equivalent refactoring solutions that optimizes the
above two objectives. The second step of the offline phase
explores this Pareto front in an intelligent manner using
innovization to rank recommended refactorings based on the
common features between the non-dominated solutions.
In our adaptation, we assume true the hypothesis that the
most frequently occurring refactorings in the non-dominated
solutions are the most important ones. Thus, the output of
this second step of the offline phase is a set of ranked solutions
based on this frequency score. NSGA-II is able to generate not
only one good refactoring solution, but a diverse set of non-
dominated solutions. This set of refactoring solutions may
include specific patterns that make them better and different
than dominated (imperfect) refactoring solutions.

To extract these patterns, we used the heuristic of prioritiz-
ing the recommendation of refactorings that are the most
redundant ones among the non-dominated solutions. To our
intuition, it seems very likely that common patterns in the
set of non-dominated solutions are very likely to be good
patterns. The opposite situation, where some non-dominated
solutions share a pattern that in of poor quality, seems highly
unlikely, though it could plausibly occur were the poor
quality pattern to be an essential enabling feature for another
pattern of high quality. While we are only expressing an
intuition here, innovization has proven itself to be of value
later in the experiments section.

The second component of our approach is an online phase to
manage the interaction with the developer. It dynamically
updates the ranking of recommended refactorings based on
the feedback of the developer. This feedback can be to
approve/apply or modify or reject the suggested refactoring

one by one as a sequence of transformations. Thus, the
goal is to guide, implicitly, the exploration of the Pareto
front to find good refactoring recommendations. Since the
ranking is updated dynamically, our interactive algorithm
allows the implicit move between non-dominated solutions
of the Pareto front.

After a number of interactions, developers may have
modified or rejected a high number of suggested refactorings
or have introduced several new code changes (new function-
alities, fix bugs, etc.). Whenever the developers stop the
refactoring session by closing the suggestions window,
the first component of our approach is executed again on the
background to update the last set of non-dominated refactor-
ing solutions by continuing the execution of NSGA-II based
on the two objectives defined in the first component and also
the new constraints summarizing the feedback of the
developer. In fact, we consider the rejected refactorings by
the developer as constraints to avoid generating solutions
containing several already rejected refactorings. This may
lead to reducing the search space and thus a fast convergence
to better solutions. Of course, the continuation of the execu-
tion of NSGA-II takes as input the updated version of the
system after the interactionswith developers.

The whole process continues until the developers decide
that there is no necessity to refactor the system any further.

3.2 Adaptation

We describe in the following subsections the details of the
various components of our framework.

3.2.1 Multi-Objective Formulation

In our previous work [9], we proposed a fully automated
approach, to improve the quality of a systemwhile preserving
its domain semantics. It uses multi-objective optimization
based on NSGA-II to find the best compromise between code
quality improvements and reducing the number of code
changes.

In this current work, we introduce the interactive compo-
nent to our NSGA-II algorithm, which radically changes the
process of finding good refactoring solutions in comparison
to our earlier work. We will compare later in the experiments
the performance of both algorithms.We present in the follow-
ing the different adaptation steps of our approach.

We ignored in this new interactive approach two objectives
considered in our previous automated refactoring work.
These two objectives are used to estimate, preserve and
improve the design coherence (semantics) when fully auto-
matically refactoring software systems. The very initial ver-
sion of our experiments actually added the interaction,
dynamic and innovization components at the top of our
previous work. However, we found that the user interactions
and the constraints learned and generated from it provided
the required guidance to avoid semantics incoherences.
Furthermore, the consideration of a large number of objec-
tives make the execution time much longer to converge
towards acceptable solutions since an increase in the number
of objectives will increase the number of non-dominated
solutions to analyze which is not suitable for interactive
optimization algorithms since it will introduce noise in the
search. Thus, we considered the textual measures as con-
straints to satisfy when generating the refactoring solutions

Fig. 1. Approach overview.
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rather than an objective to optimize as highlighted later. The
users interaction history is sufficient based on our experi-
ments thus we ignored the use of development history in our
new interactive approach.

As explained in Algorithm 1, the process starts with a
complete execution of a regular NSGA-II algorithm based on
the objectives described in the previous section (offline phase)
then three components are introduced to improve the re-
commendations: innovization, interactive and dynamic
components.

Algorithm 1. Dynamic Interactive NSGA-II at Genera-
tion t

1: Input
2: Sys: system to evaluate, Pt: parent population
3: Output
4: Ptþ1
5: Begin
6: /* Test if any user interaction occurred in the previous

iteration */
7: if UserFeedback = TRUE then
8: /* Rejected refactoring operations as constraints */
9: Ct GetConstraintsðÞ;
10: /* Updated source code after applying changes */
11: Sys GetRefactored� SystemðÞ;
12: UserFeedback FALSE;
13: end if
14: St  ;; i 1;
15: Qt  VariationðPtÞ;
16: Rt  Pt [Qt;
17: Pt  evaluateðPt; Ct; SysÞ;
18: ðF1; F2; :::Þ  NonDominatedSortðRtÞ;
19: repeat
20: St  St [ Fi;
21: i iþ 1
22: until(jStj � N)
23: Fl  Fi; " //Last front to be included
24: if jStj ¼ N then
25: Ptþ1  St;
26: else
27: Ptþ1  [l�1j¼1Fj;
28: /*Number of points to be chosen from Fl*/
29: K  N � jPtþ1j;
30: /*Crowding distance of points in Fl */
31: Crowding�Distance�AssignmentðFlÞ;
32: Quick� SortðFlÞ;
33: /*ChooseK solutions with largest distance*/
34: Ptþ1  Ptþ1 [ SelectðFl; kÞ;
35: end if
36: if tþ 1 ¼ Threshold then
37: UserFeedback TRUE;
38: /* Select and rank the best front */
39: Rank� SolutionðF1Þ;
40: Threshold Thresholdþ tþ 1;
41: end if
42: End

The first iterations of the algorithm identify the Pareto front
of the non-dominated refactoring solutions based on the
fitness functions that will be discussed later. Then, the innovi-
zation component (Section 3.3) ranks the different non-
dominated solutions based on the most common refactoring

patterns between them. The different ranked refactorings
are presented to the user based on the interactive compo-
nent. During this interactive component, the developer
may accept or reject or modify the refactoring recommen-
dations (Section 3.3). Finally, the last dynamic component
uses the interaction data with the user to reduce the search
space of possible refactoring solutions and improve the
future suggestions by repairing the Pareto front as detailed
later in Section 3.3.

3.2.2 Solution Representation

A solution consists of a sequence of n refactoring operations
involving one or multiple source code elements of the system
to refactor. The vector-based representation is used to define
the refactoring sequence. Each vector’s dimension has a refac-
toring operation and its index in the vector indicates the order
in which it will be applied. For every refactoring, pre- and
post-conditions are specified to ensure the feasibility of the
operation.

The initial population is generated by randomly assigning
a sequence of refactorings to a randomly chosen set of code
elements, or actors. The type of actor usually depends on the
type of the refactoring it is assigned to and also depends on its
role in the refactoring operation. An actor can be a package,
class, field, method, parameter, statement or variable. Table 1
depicts, for each refactoring, its involved actors and its corre-
sponding parameters.

The size of a solution, i.e., the vector’s length is randomly
chosen between upper and lower bound values. The deter-
mination of these two bounds is similar to the problem of

TABLE 1
List of Considered Refactorings for our Solution Representation

Refactorings Actors Roles

Extract class
class source class, new class
field moved fields
method moved methods

Extract interface
class source classes, new interface
method moved abstract methods

Inline class class source class, target class

Move field
class source class, target class
field moved field

Move method
class source class, target class
method moved method

Push down field
class super class, subclasses
field moved field

Push down
method

class super class, subclasses
method moved method

Pull up field
class subclasses, super class
field moved field

Pull up method
class subclasses, super class
method moved method

Move class
package source package, target package
class moved class

Extract method
method source class, new class
field moved fields
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bloat control in genetic programming where the goal is to
identify the tree size limits. Since the number of required
refactorings depends mainly on the size of the target system,
we performed, for each target project, several trial and error
experiments using the HyperVolume (HV) performance
indicator [49] to determine the upper bound after which,
the indicator remains invariant. For the lower bound, it is
arbitrarily chosen. The experiments section will specify the
upper and lower bounds used in this study. Table 2 shows
an example of a refactoring solution including three opera-
tions applied to a simplified version of a solution applied to
JVacation v1.0, a Java open-source trip management and
scheduling software.

3.2.3 Solution Variation

In each search algorithm, the variation operators play the key
role ofmovingwithin the search spacewith the aim of driving
the search towards optimal solutions.

For the crossover, we use the one-point crossover opera-
tor. It starts by selecting and splitting at random two parent
solutions. Then, this operator creates two child solutions by
putting, for the first child, the first part of the first parent
with the second part of the second parent, and vice versa for
the second child. This operator must ensure the respect of
the length limits by eliminating randomly some refactoring
operations. It is important to note that inmulti-objective opti-
mization, it is better to create children that are close to their
parents in order to have a more efficient search process. For
mutation, we use the bit-string mutation operator that picks
probabilistically one or more refactoring operations from the
solutions and replace or modify or delete them. While
the crossover operator does not introduce or modify a refac-
toring of a solution but just the sequence (a swap between
refactoring of different solutions), the mutation operator
definitely can add or modify or delete a refactoring when
applied to any solution of the population. When a mutation
operator is applied, the goal is to slightly change the solution
for the purpose to probably improve its fitness functions. We
used these three operations for the mutation operator that
are randomly selected when a mutation is applied to a solu-
tion. Thus, the mutation operator can introduce new refac-
torings by either adding completely new ones or modifying
the controlling parameters of an existing refactoring.
For example, move method (m1, A, B) could be replaced by
movemethodðm1; A; CÞ or movemethodðm3; A;BÞ where m1,
A and B are the controlling parameters of the refactoring
move method. Furthermore, the selection operator allows to
regenerate part of the population randomly at every iteration
thus new refactoring will be introduced since new solutions
are generated during the execution process.

When applying the change operators, the different pre-
and post-conditions are checked to ensure the applicability
of the newly generated solutions. For example, to apply the
refactoring operation movemethod a number of necessary
pre-conditions should be satisfied such as the method and
the source and target classes should exists. A post-condition
example is to check that the method exists and was moved to
the target class and did not exist anymore in the source class.
More details about the adapted pre- and post-conditions for
refactorings can be found in [2]. We also apply a repair opera-
tor that randomly selects new refactorings to replace those
creating conflicts.

3.2.4 Solution Evaluation

The generated solutions are evaluated using two fitness
functions as detailed in the following paragraphs.

Minimize the number of code changes as an objective: The app-
lication of a specific suggested refactoring sequence may
require an effort that is comparable to that of re-implementing
part of the system from scratch. Taking this observation into
account, it is essential to minimize the number of suggested
operations in the refactoring solution since the designer may
have some preferences regarding the percentage of deviation
with the initial program design. In addition, most developers
prefer solutions thatminimize the number of changes applied
to their design. Thus, we formally defined the fitness function
as the number of modified actors/code elements (packages,
classes, methods, attributes) by the generated refactorings
solution.

fðxÞ ¼
Xn
i�1

#code elementsðRi; xÞ; (1)

where x is the solution to evaluate, n is the number of refac-
torings in the solution x and #code elements is a function
that counts the number of modified code elements in a
refactoring. Any solution with refactorings being performed
on the same code elements will have better (lower) fitness
value for this objective. Such a definition of the objective is
in favor of code locality since it encourages refactoring the
same code fragment, as developers prefer to refactor the
specific elements with which they are most familiar [7]
instead of applying scattered changes throughout the whole
system. The proposed fitness function is different from that
employed in our previous work [9] where only the number
of applied refactorings are counted. In fact, each refactoring
type may have a different impact on the system in terms of
number of code changes it engenders, something that can
be identified using our new formulation.

Maximize software quality as an objective:Many studies have
utilized structural metrics as a basis for defining quality
indicators for a good system design [18], [51]. As an

TABLE 2
Example of a Solution Representation

Operation Source/entity Target entity

Move Method ctrl.booking.BookingController::handleLodgingViewEvent
(java.awt.event.ActionEvent):void

ctrl.booking.LodgingModel

Extract Class ctrl.booking.SelectionModel:: - flightList + addFlight():void
+clearFlight():void

ctrl.booking.FlightList

Move Method ctrl.booking.BookingController::createBookings():void ctrl.CoreModel
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illustrative example, [38] proposed a set of quality measures,
using the ISO 9126 specification, called QMOOD. Each of
these quality metrics is defined using a combination of low-
level metrics as detailed in Tables 3 and 4.

The QMOOD model has been used previously in the area
of search-based software refactoring [18], [52] and sowe use it
to estimate the effect of the suggested refactoring solutions on
software quality. QMOOD has the advantage that it defines
six high-level design quality attributes (reusability, flexibility,
understandability, functionality, extendibility, and effective-
ness) that can be calculated using 11 lower level design
metrics. Its objective function is defined as:

Quality ¼
P6

i¼1 QAiðSÞ
6

: (2)

Where QAi is the quality attribute number i being
calculated based on the returned structural metrics from the
system S.

Since it may not be sufficient to consider structural metrics,
we used the design coherencemeasures of our previouswork

to ensure that every refactoring solution preserves the
semantics of the design. We start from the assumption that
the vocabulary of an actor is borrowed from the domain
terminology and therefore can be used to determine which
part of the domain semantics an actor encodes. Thus, two
actors are likely to be semantically similar if they use similar
vocabularies.

The vocabulary can be extracted from the names of
methods, fields, variables, parameters, types, etc. We calcu-
lated the design coherence similarity between actors using an
information retrieval-based technique, namely cosine similar-
ity. Each actor is represented as an n-dimensional vector,
where each dimension corresponds to a vocabulary term. The
cosine of the angle between two vectors is considered as an
indicator of similarity. More details can be found in our
previouswork [53].

3.3 Interactive Recommendation of Refactorings

The first step of the interactive component is executed as
described in Algorithm 2, to investigate if there are some
common principles among the generated non-dominated
refactoring solutions.

Algorithm 2. Rank Refactoring Operation Procedure

1: Input
2: NS: Non-dominated SolutionSet of the first front
3: Output
4: HM: HashMap of refactorings along with their occurrences.
5: Begin
6: HM  ;;
7: /* Compute the number of occurrence of each refactoring

operation*/
8: for i ¼ 1 to jNSj do
9: for each j ¼ 1 to jNSij do
10: /* If a refactoring operation does not exist in the list,

add its hash and set its occurrence number to 1*/
11: if ðNSi;j =2 HMÞ then
12: HM  HM [HashðNSi;jÞ;
13: HM½HashðNSi;jÞ�  1;
14: /* If a refactoring operation exists in the list, incre-

ment its occurrence number */
15: else
16: HM½HashðNSi;jÞ�  HM½HashðNSi;jÞ� þ 1;
17: end if
18: end for
19: end for
20: End

The algorithm checks if the optimal refactoring solutions
have some common features such as identical refactoring
operations among most or all of the solutions, and a specific
common order/sequence in which to apply the refactorings.
Such information will be used to rank the suggested refac-
torings for developers using the following formula:

RankðRx;yÞ ¼
Pn

j¼0
PsizeðSjÞ

i¼0 ½Ri;j ¼ Rx;y�
MAXðPn

j¼0
PsizeðSjÞ

i¼0 ½Ri;j ¼ Rx;y�Þ
2 ½0:::1�;

(3)

where Rx;y is the refactoring operation number x (index in
the solution vector) of solution number y, and n is the

TABLE 3
QMOOD Metrics Description

Design Metric Design
Property

Description

Design Size in
Classes ðDSCÞ

Design Size Total number of classes in
the design.

Number Of
Hierarchies
ðNOHÞ

Hierarchies Total number of “root” clas-
ses in the design (count(Max-
InheritenceTree (class)=0))

Average Num-
ber of Ances-
tors ðANAÞ

Abstraction Average number of classes
in the inheritance tree for
each class.

Direct Access
Metric ðDAMÞ

Encapsulation Ratio of the number of pri-
vate and protected attributes
to the total number of attrib-
utes in a class.

Direct Class
Coupling
ðDCCÞ

Coupling Number of other classes a
class relates to, either
through a shared attribute
or a parameter in a method.

Cohesion
Among Meth-
ods of class
ðCAMCÞ

Cohesion Measure of how related
methods are in a class in
terms of used parameters. It
can also be computed by: 1
� LackOfCohesionOfMethods
()

Measure Of
Aggregation
ðMOAÞ

Composition Count of number of attrib-
utes whose type is user
defined class(es).

Measure of
Functional
Abstraction
ðMFAÞ

Inheritance Ratio of the number of
inherited methods per the
total number of methods
within a class.

Number of
Polymorphic
Methods
ðNOP Þ

Polymorphism Any method that can be
used by a class and its
descendants. Counts of the
number of methods in a
class excluding private,
static and final ones.

Class Interface
Size ðCISÞ

Messaging Number of public methods
in class.

Number of
Methods
ðNOMÞ

Complexity Number of methods
declared in a class.
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number of solutions in the front. Si is the solution of index i.
All the solutions of the Pareto front are ranked based on the
score of this measure applied to every solution.

Once the Pareto front solutions are ranked, the second step
of the interactive step is executed as described in Algorithm 3.
The refactorings of the best solution, in terms of ranking, are
recommended to the developer based on their order in the
vector. Then, the ranking score of the solutions is updated
automatically after every feedback (interaction) with the
developer. Our interactive algorithm proposes three levels of
interaction as described in Fig. 2 andAlgorithm 3.

The developer can check the ranked list of refactorings
and then apply, modify or reject the refactoring. If the devel-
oper prefers to modify the refactoring, then our algorithm
can help them during the modification process as described
in Fig. 3.

In fact, our tool proposes to the developer a set of recom-
mendations to modify the refactoring based on the history of
changes applied in the past and the semantic similarity
between code elements (classes, methods, etc.). For example,
if the developer wants to modify a move method refactoring
then, having specified the source method to move, our
interactive algorithm automatically suggests a list of possible
target classes ranked based on the history of changes and
semantic similarity. This is an interesting feature since devel-
opers often know which method to move, but find it hard to
determine a suitable target class [22]. The same observation
is valid for the remaining refactoring types. Another action

that the developers can select is to reject/delete a refactoring
from the list.

After every action selected by the developer, the ranking is
updated based on the feedback using the following formula:

RankðSiÞ ¼
XsizeðSiÞ

k¼1
RankðRk;iÞ

þ ðRO \AppliedRefactoringsListÞ
� ðRO \RejectedRefactoringsListÞ þ 0:5

� ðRO \ModifiedRefactoringsListÞ: (4)

Where Si is the solution to be ranked, the first component
consists of the sum of the ranks of its operations as
explained previously and the second component will take
the value of 1 if the recommended refactoring operation
was applied by the developer, or -1 if the refactoring opera-
tion was rejected or 0.5 if it was partially modified by the
developer. The recommended refactorings will be adjusted
based on the updated ranking score.

It is important to note that we calculate the ranking score
for each non-dominated solution using the innovization

TABLE 4
Quality Attributes and their Computation Equations

Quality attributes Definition

Computation

Reusability A design with low coupling and high cohesion is easily reused by other designs.
�0:25 � Couplingþ 0:25 � Cohesionþ 0:5 �Messagingþ 0:5 �DesignSize

Flexibility The degree of allowance of changes in the design.
0:25 � Encapsulation � 0:25 � Couplingþ 0:5 � Compositionþ 0:5 � Polymorphism

Understandability The degree of understanding and the easiness of learning the design implementation details.
0:33 �Abstractionþ 0:33 � Encapsulation� 0:33 � Coupling
þ 0:33 � Cohesion� 0:33 � Polymorphism� 0:33 � Complexity� 0:33 �DesignSize

Functionality Classes with given functions that are publicly stated in interfaces to be used by others.
0:12 � Cohesionþ 0:22 � Polymorphismþ 0:22 �Messagingþ 0:22 �DesignSizeþ 0:22 �Hierarchies

Extendibility Measurement of design’s allowance to incorporate new functional requirements.
0:5 �Abstraction� 0:5 � Couplingþ 0:5 � Inheritanceþ 0:5 � Polymorphism

Effectiveness Design efficiency in fulfilling the required functionality.
0:2 �Abstractionþ 0:2 � Encapsulationþ 0:2 � Compositionþ 0:2 � Inheritanceþ 0:2 � Polymorphism

Fig. 2. Refactorings recommended by our technique.
Fig. 3. Recommended target classes by our technique for a move
method refactoring to modify.
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component and then the solution with the highest score is
presented refactoring by refactoring to the developer. In fact,
refactorings tend to be dependent on one another thus it is
important to ensure the coherence of the recommended
solution. After a number of modified or rejected refactorings
or several new code changes introduced, the generated Pareto
front of refactoring solutions byNSGA-II needs to be updated
since the systemwasmodified in different locations.

Algorithm 3. GUF (GetUser Feedback) Procedure toMan-
age the Interactionswith the Developer (Online Phase)

1: Input
2: RNS: Ranked Non-dominated SolutionSet
3: Output
4: HM: HashMap of refactorings along with their occurrences.
5: Begin
6: AppliedRefactorings ;;
7: RejectedRefactorings ;;
8: for i ¼ 1 to jRNSj do
9: ref ½i�  0;
10: end for
11: /* Main loop to suggest refactorings one by one to the

user*/
12: while jRejectedRefactorings < a do
13: /* Select index of the the solution with highest rank*/
14: index MaxRankðRNSÞ;
15: d UserDecisionðRNSindex;ref ½index�Þ;
16: /* If the user has applied or modified the operation*/
17: if ðd ¼ TrueÞ then
18: AppliedRefactorings AppliedRefactorings

[RNSindex;ref½index�;
19: /* If the user has rejected the operation*/
20: else
21: RejectedRefactorings RejectedRefactorings

[ RNSindex;ref½index�;
22: end if
23: Ref ½index�  ref ½index� þ 1;
24: /* Update solutions indexes */
25: for i ¼ 1 to jRNSj do
26: UpdateRank ðRNSi;AppliedRefactorings;

RejectedRefactoringsÞ
27: end for
28: end while
29: End

To check the applicability of the refactorings, we continu-
ously check the pre-conditions of individual refactorings on
the version after manual edits. Thus, the ranking of the solu-
tions will change after every interaction. If many refactorings
are rejected, the NSGA-II algorithm will continue to execute
while taking into consideration all the feedback fromdevelop-
ers as constraints to satisfy during the search. The rejected
refactorings should not be considered as part of the newly
generated solutions and the new system after refactoring will
be considered in the input of the next iteration of theNSGA-II.

In the non-interactive refactoring systems, the set of refac-
torings, suggested by the best-chosen solution, needs to be
fully executed in order to reach the solution’s promised
results. Thus, any changes applied to the set of refactorings
such as changing or skipping some of them could deteriorate
the resulting system’s quality. In this context, the goal of this

work is to copewith the above-mentioned limitation by grant-
ing to the developer’s the possibility to customize the set of
suggested refactorings either by accepting, modifying or
rejecting them. The novelty of this work is the approach’s
ability to take into account the developer’s interaction, in
terms of introduced customization to the existing solution, by
conducting a local search to locate a new solution in the Pareto
Front that is nearest to the newly introduced changes. We
believe that our approach may narrow the gap that exists
between automated refactoring techniques and human inten-
sive development. It allows the developer to select the refac-
torings that best matches his/her coding preferences while
modifying the source code to update existing features.

3.4 Running Example: Illustration on the
JVacation System

3.4.1 Context
To illustrate our interactive algorithm, we consider the refa-
ctoring of JVacation v1.01, a Java open-source trip manage-
ment and scheduling software. We asked a developer
to update an existing feature by adding one more field
(Premium member ID) in the personal information form that
a user has to fill out when booking a flight.

As JVacation architecture is based on the Model/View/
Controller model, adding this extra field would trigger small
updates on the View by adding a textbox in the personal
information input form. Also the controller that handles the
booking process needs to be revised. At the model level, an
attribute needs to be added to the class that hosts the booking
information. Finally, an update on the database level is
needed to save the newlymodified booking objects.

To simplify the illustration, we have limited the update to
these above-mentioned changes knowing that, in order to
completely implement this function, several other updates
may be needed in other views and controllers in order to
show, for example, the newly added field, as part of the infor-
mation related to the passengers’ records for a given flight.
We asked the developer to refactor the software systemwhile
performing the given task, therefore, the developer has ini-
tially launched the plugin that triggered our interactive algo-
rithms. We assisted the developer in only selecting the initial
default parameters for the optimization algorithm (such as
theminimumandmaximum chromosome lengths).

3.4.2 Illustration of the Innovization Component

After generating the upfront list of best refactoring solutions,
three solutions are selected from the Pareto front that were
involved in the interactive session to simplify this running
example. Each solution has a fitness score composed of the
median of quality improvement calculated based on the struc-
tural measures of the refactored system for each solution, and
the number of operations within each solution. The previous
section describes, these fitness values, for each solution, in
terms of quality improvement and refactoring effort com-
pared to the original system values before refactoring. These
information is shown in Table 5.

One of the classic challenges in multi-objective optimiza-
tion is the choice of the most suitable solution for the
developer. The straightforward solution for this problem

1. https://sourceforge.net/projects/jvacation/
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would be tomanually investigate all solutions, i. e., execute all
refactoring operations for each solution and allow the devel-
oper to compare between several refactored designs. This
task can easily become tedious due to the large number of
solutions in the Pareto front.

To facilitate the selection task, decision making support
tools can be used to automate the selection of solutions based
on the decision maker’s preferences. In our context, these
preferences can be considered as the packages and classes
that the developer is interested in when implementing the
requested feature. Thus, another straightforward heuristic
would be to automatically shortlist solutions that only refactor
entities that are of interest to developers. Unfortunately, this

will not necessarily reduce drastically the number of pre-
ferred solutions especially if the system is small.

To cope with this issue, another interesting idea would be
to calculate the overlap between solutions. Still, choosing the
most appropriate solution can be challenging as the developer
has tomanually break the tie between solutions by comparing
between their specific refactorings. This comparison may not
be straightforward because specific refactorings between to
candidate solutions may both be of an interest to the devel-
oper, for example, when comparing between solution 1 and
solution 2, both solutions contain a move-method operation
that agree on moving a function called getSaluation() but
disagree on the target class.

Since this function belongs to the booking panel, the partic-
ipating entities are of an interest to the developer, so no choice
can be automatically done based on the developer’s preferred
entities. Moreover, both target classes (respectively LabelSpin-
ner and LabelEdit), each proposed by one solution, belong to
the same package (gui.components) and they are semantically
close, so the fitness function values cannot be used to break
the tie. In this scenario, only the developer would be qualified
to take the decision of either accepting one operation over the
other or maybe rejecting both operations. Thus, simply filter-
ing solutions based on the developer’s preferred entities may
fall short in this kind of scenarios. Furthermore, asking the
developer to exhaustively break the tie between shortlisted
solutions can become tedious.

In this context, our interactive process differs from simply
filtering operations based on a given preference as it learns
from the developer’s decisionmaking and dynamically break
the tie between Pareto-equivalent solutions by upgrading
those with the highest number of successful recommenda-
tions (applied refactorings) while penalizing those who con-
tain rejected operations. To illustrate this process, Table 6
describes each solution’s refactorings along with its rank after

TABLE 6
Three Simplified Refactoring Solutions Recommended for JVacation v1.0

Operation Source entity Target entity

Solution 1 fitness scores before normalization (0.198, 4)

Move Method ctrl.booking.BookingController::handleLodgingViewEvent(java.awt.event.ActionEvent):void ctrl.booking.LodgingModel

Extract Class ctrl.booking.SelectionModel:: - flightList + addFlight():void +clearFlight():void ctrl.booking.FlightList

Move Method ctrl.booking.BookingController::createBookings():void ctrl.CoreModel

Move Method gui.panels.booking.bTravelersPanel::getSalutation():java.lang.String gui.components.LabelSpinner
Solution 1 Rank 3.960

Solution 2 fitness scores before normalization (0.202, 5)

Move Method ctrl.booking.BookingController::handleLodgingViewEvent(java.awt.event.ActionEvent):void ctrl.booking.lodgingList

Move Method gui.panels.maintenance.mLodgingsPanel::getStart():java.util.Date gui.components.LabelCombo
Inline Class ctrl.ModelChangeEvent ctrl.CoreModel

Extract Class ctrl.booking.SelectionModel:: - travelerList + addTraveler():void +clearTraveler():void ctrl.booking.TravelerList

Move Method gui.panels.booking.bTravelersPanel::getSalutation():java.lang.String gui.components.LabelSpinner
Solution 2 Rank 4.064

Solution 3 fitness scores before normalization (0.209, 6)

Move Method ctrl.booking.BookingController::handleLodgingViewEvent(java.awt.event.ActionEvent):void ctrl.booking.lodgingList

Move Method gui.panels.maintenance.mLodgingsPanel::getStart():java.util.Date gui.components.DateEdit

Extract Class ctrl.booking.SelectionModel:: - flightList + addFlight():void +clearFlight():void ctrl.booking.FlightList
Extract Class ctrl.booking.SelectionModel:: - travelerList + addTraveler():void +clearTraveler():void ctrl.booking.TravelerList

Inline Class ctrl.ModelChangeEvent ctrl.CoreModel

Move Class Db.factory.DBObjectFactory db
Solution 3 Rank 3.471

TABLE 5
Quality Attributes Value on the JVacation System

Quality Attribute Original

System

Solution 1 Solution 2 Solution 3

Reusability (þ0.5) (þ0.4) (þ0.5)
1.74225 1.79225 1.79225 1.79225

Flexibility (þ0.001) (þ0.001) (þ0.001)
1.82 1.820 1.820 1.820

Understandability (þ0.08) (þ0.07) (þ0.087)
�4.5408 �4.5398 �4.5398 �4.5398

Functionality (þ0.5) (þ0.6) (þ0.5)
1.16314 1.21314 1.21314 1.21314

Extendibility (þ0.007) (þ0.012) (þ0.011)
19.7225 19.7295 19.7300 19.7299

Effectiveness 9.5406 9.5406 9.5406 9.5406

Quality Gain � 0.198 0.202 0.209

Number of operations � 11 14 19
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the execution of the first step of the interactive algorithm.
For the purpose of simplicity, we considered a first fragment
of each solution. The solutions are ranked based on Equation 3
to identify the most common refactorings between the non-
dominated solutions. This is achieved by counting the num-
ber of occurrences of operation within the Pareto front solu-
tion set, this number will be averaged by the maximum
number of occurrences found.

3.4.3 Illustration of the Interactive and Dynamic

Components

In the interaction part, the recommended refactoring wanted
tomove a function that defines the trip’s startingdate to aLabel-
Combo class. The developer thought that moving it to DateEdit
class makes more sense instead because the return value of the
moved function is of type Date and DateEdit is semantically
closer to the method. So the refactroings were partially

modified by the developer and the ranking score of the second
solutionwas increased by 0.5 for Solution 2 but by 1 for Solution
3 since it has already a move method operation that suggests
moving the samemethod to the chosen class by the developer,
i. e., the applied operation exists in that solution.

In the third interaction, the recommended refactoring
suggests merging two classes CoreModel and ModelChange-
Event. The first class gathers, for a given customer, all his/her
bookings and sums up the total price, since the price may be
later on reduced based on the customer’s premium number
(field to be added) the developer decided to keep the class
intact and thus the operation was rejected and so the score
of the top Solution 2was decreased by 1. The solutionwith the
highest rank is selected for execution and its related opera-
tions are shown to the user based on their order in the vector.
Table 7 summarizes the various interactions between the
developer and the suggested refactorings from the three
abovementioned solutions when adding the new feature.

The first recommended refactoring of the top ranked solu-
tion (Solution 2) suggests moving an event function from the
controller class of the booking process, since the developer is
required to investigate this class and since this function is not
called during the booking procedure, moving it out of the
class will reduce the number of investigated functions, so
the operation was applied by the developer and accordingly
the ranking score was increased by 1 for both Solutions 2 and 3
since they include this refactoring in their solutions.

Upon the rejection of the third suggested refactoring,
the ranking score of solution 3 has become higher than the
one of solution 2, this has triggered the fourth recom-
mended operation to be issued from solution 3 instead.
All the refactorings that belong to the intersection between
solution 3 and the lists of applied/rejected refactorings will
be skipped during the recommendation process.

For instance, the first and second operation of solution 3will
be skipped as they have been already applied by the devel-
oper, and the third operation will be suggested during the
fourth interaction. This operation suggests the extraction of a
class from the selection mode of the booking process. Since
this refactoringwill facilitate the distinction between functions
related to the flight from those related to the passengers, the
developer has approved the operation. The algorithm will
stop recommending new refactorings either on the request of
the developer or when the system achieves acceptable quality
improvement in terms of reducing the number of design
defects and improving quality metrics. These parameters can
be specified by the developer or the teammanager.

4 VALIDATION

To evaluate the ability of our refactoring framework to
generate good refactoring recommendations, we conducted
a set of experiments based on eight open source systems
and two industrial projects provided by the IT department
at the Ford Motor Company. The obtained results are subse-
quently statistically analyzed with the aim of comparing our
proposal with a variety of existing approaches. The relevant
data related to our experiments and a demo about the main
features of the tool can be found in [61].

In this section, we first present our research questions and
validation methodology followed by experimental setup.
Thenwe describe and discuss the obtained results.

TABLE 7
Four Different Interaction Examples with the Developer Applied
on the Refactoring SolutionsRecommended for JVacation v1.0

Operation R1:MoveMethod(ctrl.booking.Booking-
Controller ::handleLodgingViewEvent:void,
ctrl.booking.LodgingList)

Decision Applied
Changes AppliedRefactoringsList = {R1} ,

RejectedRefactoringsList = {}
SolutionSet Solution1 Solution2 * Solution3
Initial rank 3.960 4.064 3.471
Interation1 3.960 5.064 (þ1) 4.471 (þ1)
Operation R2:MoveMethod(gui.panels.maintenance.

mLodgingsPanel::getStart():java.util.Date,
gui.components.LabelCombo)

Decision Modified to: R2: MoveMethod(gui.panels.
maintenance. mLodgingsPanel::getStart():
java.util.Date, gui.components.DateEdit)

Changes AppliedRefactoringsList = {R1,R2},
RejectedRefactoringsList = {}

SolutionSet Solution1 Solution2 * Solution3
Initial rank 3.960 4.064 3.471
Interation1 3.960 5.064 (þ1) 4.471 (þ1)
Interation2 3.960 5.564 (þ0.5) 5.471 (þ1)
Operation R3: InlineClass(ctrl.ModelChangeEvent, ctrl.

CoreModel)
Decision Rejected
Changes AppliedRefactoringsList = {R1,R2},

RejectedRefactoringsList = {R3}
SolutionSet Solution1 Solution2 * Solution3
Initial rank 3.960 4.064 3.471
Interation1 3.960 5.064 (þ1) 4.471 (þ1)
Interation2 3.960 5.564 (þ0.5) 5.471 (þ1)
Interation3 3.960 4.564 (�1) 5.471

Operation R4: ExtractClass(ctrl.booking.Selection-
Model::-flightList +addFlight():void+clear-
Flight():void, ctrl.booking.FlightList)

Decision Applied
Changes AppliedRefactoringsList = {R1,R2,R4} ,

RejectedRefactoringsList = {R3}
SolutionSet Solution1 Solution2 Solution3 *
Initial rank 3.960 4.064 3.471
Interation1 3.960 5.064 (þ1) 4.471 (þ1)
Interation2 3.960 5.564 (þ0.5) 5.471 (þ1)
Interation3 3.960 4.564 (�1) 5.471
Interation4 4.960 (þ1) 4.564 6.471 (þ1)
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4.1 Research Questions

We defined three categories of research questions to measure
the correctness, relevance and benefits of our interactivemulti-
objective refactoring approach comparing to the state of the art
based on several practical scenarios. It is important to evaluate,
first, the correctness of the recommended refactoring. Since it
is not sufficient to make correct refactoring recommendations,
we evaluated the benefits of applying the recommended refac-
torings in terms of fixing code smells and improving quality
attributes. Programmers are not interested, in practice, to
apply all the correct and useful recommended refactorings
due to limited resources thus we evaluated both the relevance
of our recommendations and our ranking efficiency from pro-
grammers perspective based on several real-world scenarios
including productivity and post-study questionnaires. We
considered various existing refactoring approaches as a base-
line for this proposed interactive refactoring technology to
define an accurate estimation of possible improvements.

The research questions are as follows:
RQ1: Correctness, Relevance and Comparison with State of

the Art.

� RQ1-a: Correctness. To what extent the results of our
approach are similar to the ones proposed by dev-
elopers compared to fully-automated refactoring
techniques?

� RQ1-b: Benefits–antipatterns correction. To what extent
code smells can be fixedusing our approach compared
to fully-automated refactoring techniques?

� RQ1-c: Benefits–improving quality. To what extent can
our approach improve the overall quality of software
systems compared to fully-automated refactoring
techniques?

� RQ1-d: Relevance to programmers. To what extent can
our approach make meaningful recommendations
compared to fully-automated refactoring techniques?

RQ2: Interaction Relevance.Towhat extent can our approach
efficiently rank the recommended refactorings?

RQ3: Impact based on Practical Scenarios.

� RQ3-a: To what extent our approach can improve the
productivity of programmers when fixing bugs compared
to fully-automated refactoring techniques?

� RQ3-b: To what extent our approach can improve the
productivity of programmers when adding new features
compared to fully-automated refactoring techniques?

� RQ3-c: How do programmers evaluate the usefulness
of our approach (questionnaire)?

4.2 Validation Methodology

To answer the research questions described in the previ-
ous section, we give, first, an overview about the
adopted validation methodology that include the follow-
ing tasks:

� Task-1: Generate data for baseline methods by using
other existing state-of-the-art automated refactoring
tools and methods offline. (RQ1a-d)

� Task-2:Manually refactor a system. (RQ1a)
� Task-3: Use our tool (DINAR) to collect final set of

recommendations. (RQ1a-d, RQ2)
� Task-4: Rate solutions and recommendations of dif-

ferent methods and tools. (RQ1d, RQ2)
� Task-5:Code smells detection after refactoring. (RQ1b)
� Task-6: Measure quality metrics after refactoring.

(RQ1c)
� Task-7: Fix bugs on refactored / unrefactored systems.

(RQ3a)
� Task-8: Implement features on refactored / unrefac-

tored systems.(RQ3b)
� Task-9: Post-study questionnaire. (RQ3c)

For each task, we defined and used different evaluation
metrics (Precision, Recall, number of fixed antipatterns, the
quality gain, manual correctness, number of modified/
rejected/accepted recommendations and execution time)
which are described in this section. These metrics are calcu-
lated and compared for different refactoring techniques
which are applied on a variety of software projects under
the specific above scenarios. Table 8 shows the summary
of the connections between the research questions, metrics
and tasks detailed in this section.

In order to have a consistent comparison, we considered
the refactoring solutions recommended by our approach after
all interactions with the developers (last set of solutions).
Therefore, we refer to these sets of refactoring solutions as our
approach results afterward. To create a baseline, we asked the
participants in our study to analyze and apply manually
several refactoring types using Eclipse IDE on several code
fragments extracted from different systems where most of
them correspond to code smells identified in previous studies
as worth removing by refactoring [19], [54]. This golden set is
defined based on the following two main criteria: 1.

TABLE 8
Summary of the Research Questions, their Goals, Defined Metrics to Answer and

Analyse Them, and the Associated Tasks to Collect Data and Calculate The Metrics

RQ# RQ Goal Sub-RQ Sub-Goal Metric(s) Task(s)#

RQ1 Relevant Solutions

RQ1-a Similarity RC, PR 1, 2, 3
RQ1-b Fixing code smells NF 1,3,5
RQ1-c Overall quality G 1,3,6
RQ1-d Meaningful recommendation MC 1,3,4

RQ2 Efficient ranking - NAR, NRR, NMR, PR@k, MC@k 3, 4

RQ3 Usefulness
RQ3-a Productivity / fixing bugs TP 7
RQ3-b Productivity /adding features 8
RQ3-c questionnaire 9
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Refactorings that fix a design flaw and did not change the
behavior or introduce bugs, 2. Refactorings that improve a set
of quality metrics (based on the QMOODmodel) and did not
change the behavior or introduce bugs. We refer to these
refactoring solutions as expected refactorings afterward.

To answer RQ1, it is important to validate the proposed
refactoring solutions from both quantitative and qualitative
perspectives. For RQ1-a, we calculated precision and recall
scores to compare between refactorings recommended by
each approach and those expected based on the participants
opinion:

RCrecall ¼ Approach Solution \ Expected Refactorings

Expected Refactorings
2 ½0; 1�

(5)

PRprecision ¼ Approach Solution \ Expected Refactorings

Approach Solution
2 ½0; 1�:

(6)

When calculating the precision and recall, we consider a
refactoring as a correct recommendation if all the controlling
parameters are the same like the expected ones.

For RQ1-b, we considered another quantitative evaluation
which is the percentage of fixed code smells (NF) by the refac-
toring solution. The detection of code smells after applying a
refactoring solution is performed using the detection rules of
[19]. Formally,NF is defined as:

NF ¼ #fixed code smells

#code smells
2 ½0; 1�: (7)

The detection of code smells is very subjective and some
developers prefer not to fix some smells because the code is
stable or some of them are not important to fix. To this end,
we considered for RQ1-c another metric, G, based on
QMOOD that estimates the quality improvement of the sys-
tem by comparing the quality before and after refactoring
independently from the number of fixed design defects. The
average of the six QMOOD attributes were used: reusability,
flexibility, understandability, Extendibility, Functionality and
effectiveness. All of them are formalized using a set of quality
metrics. Hence, the gain for each of the considered QMOOD
quality attributes and the average total gain in quality after
refactoring can be easily estimated as:

G ¼
P6

i¼1 Gqi

6
and Gqi ¼ q0i � qi; (8)

where q0i and qi represents the value of the QMOOD quality
attribute i after and before refactoring, respectively.

For RQ1-d, we asked the participant in our study, as
detailed in Section 4.4, to evaluate, manually, whether the
suggested refactorings are feasible and efficient at improving
the software quality and achieving theirmaintainability objec-
tives.We define themetric Manual Correctness (MC) tomean
the number of meaningful refactorings divided by the total
number of recommended refactorings. The meaningful refac-
torings are recognized by taking the majority of votes from
the developers. This procedure is analogous to the real-world
situations based on our own experience with our industrial
partners. Therefore,MC is given by the following equation:

MC ¼ # Meaningful Refactorings

# Recommended Refactorings
: (9)

To avoid the computation of the MC metric being biased
by the developer’s feedback, we asked the developers to
manually evaluate the correctness of the recommended
refactorings of our approach on the systems that they did
not refactor using our tool. Therefore, The developers did
not evaluate the results of their own results of interactive
refactoring but the resultant refactorings recommended on
other systems where other developers apllied our approach.
The main motivation for the manual correctness metric is
actually to address the concern that the deviation with the
expected refactorings could be just because of the preferen-
ces of the developers. The manual correctness metric is
evaluated manually on each refactoring one-by-one to check
their validity. Thus, we evaluated the results produced by
the different tools and we were not limited to the compari-
son with the expected results. We did the comparison with
the expected results to provide an automated way to evaluate
the results and avoid the developers being biased by the
results of our tool (developers did not know anything about
the refactorings suggested by the different tools when they
provided their recommendations).

We used the metrics MC, RC, PR, NF and G to perform
the comparisons and answer respectively RQ1a-d.

NAR = \frac{\#\ Accepted\ Refactorings}{\#\ Recom-
mended\ Refactorings} \in [0,1]We considered some other
useful metrics to answer RQ2 that count the percentage of
refactorings that were accepted (NAR) or rejected (NRR) or
applied with some modifications (NMR). Formally, these
metrics are defined as:

NAR ¼ # Accepted Refactorings

# Recommended Refactorings
2 ½0; 1� (10)

NRR ¼ # Rejected Refactorings

# Recommended Refactorings
2 ½0; 1� (11)

NMR ¼ # Modified Refactorings

# Recommended Refactorings
2 ½0; 1�: (12)

To answer RQ2, we also evaluated the relevance of the
recommended refactorings in the top kwhere k =1, 5, 10 and
15 using the following metrics PR@k and MC@k. We used
the same equations defined for RQ1 with the only difference
that the considered suggested refactorings are exclusively
those located in the top k positions of the ranked list of
refactorings at multiple instances after the execution of the
innovization component.

To answer RQ3, we aimed to assess how the refactoring
actually increases the software quality and productivity in
that the effort to fixing bugs (R3-a) or adding new features
(R3-b) should reduce after performing the refactorings. We
asked the software developers participated in this study to
add new features and fix a set of bugs. To avoid that the
achieved results might be due to the different levels of ability
of the developers groups, we adapted a counter-balanced
design where each participant performed two tasks, one on
the original system and one on the refactored system. The
details of these scenarios will be described later as detailed
in Section 4.6. To estimate the impact of the suggested
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refactorings on the productivity of developers, we defined
the following metric TP to measure the time required to per-
form the same activities on the system with and without
refactoring:

TPi ¼ 1�
#minutes required to perform task i on the system after refactoring

#minutes required to perform task i on the system befor refactoring
:

(13)

We have also compared the productivity results of our
approach compared to Kessentini et al. [19], Ouni et al. [9]
and Harman et al. [17] to test the hypothesis if better quality
of the software may increase the productivity of developers.
To answer RQ3-b, we used a post-study questionnaire that
collects the opinions of developers on our tool as detailed in
the next section.

4.3 Studied Software Projects

We used a set of well-known open-source Java projects and
two systems from our industrial partner, the Ford Motor
Company. We applied our approach to eight open-source
Java projects: Xerces-J, JHotDraw, JFreeChart, GanttProject,
Apache Ant, Rhino and Log4J and Nutch. Xerces-J is a fam-
ily of software packages for parsing XML. JFreeChart is a
free tool for generating charts. Apache Ant is a build tool
and library specifically conceived for Java applications.
Rhino is a JavaScript interpreter and compiler written in
Java and developed for the Mozilla/Firefox browser. Gantt-
Project is a cross-platform tool for project scheduling. Log4J
is a popular logging package for Java. Nutch is an Apache
project for web crawling. JHotDraw is a GUI framework for
drawing editors.

In order to get feedback from the original developers of
a system, we considered in our experiments two large
industrial projects provided by our industrial partner, the
Ford Motor Company. The first project is a marketing return
on investment tool, called MROI, used by the marketing
department of Ford to predict the sales of cars based on the
demand, dealers information, advertisements, etc. The tool
can collect, analyze and synthesize a variety of data types
and sources related to customers and dealers. It was imple-
mented over a period of more than eight years and fre-
quently changed to include and remove new/redundant
features.

The second project is a Java-based software system, JDI,
which helps the Ford Motor Company to create the best
schedule of orders from the dealers based on thousands of
business constraints. This system is also used by Ford Motor
Company to improve their vehicles sales by selecting the
right vehicle configuration to match the expectations of their
customers. JDI is highly structured and software developers
have developed several versions of it at Ford over the past
10 years. Due to the importance of the application and
the high number of updates performed on both systems, it
is critical to ensure that they remain of high quality so to
reduce the time required by developers to introduce new
features in the future.

We selected these 10 systems for our validation because
they range from medium to large-sized open-source proj-
ects, which have been actively developed over the past

10 years, and their design has not been responsible for
a slowdown of their developments. Table 9 provides some
descriptive statistics about these 10 programs.

4.4 Study Participants

Our study involved 14 participants from the University of
Michigan and 8 software developers from the Ford Motor
Company. Participants include 6 master students in Soft-
ware Engineering, 8 PhD students in Software Engineering
and 8 software developers. All the participants are volun-
teers and familiar with Java development and refactoring.
The experience of these participants on Java programming
ranged from 2 to 19 years. We carefully selected the partici-
pants to make sure that they already applied refactorings
during their previous experiences in development.

All the graduate students have already taken at least one
position as software engineer in industry for at least two
years as software developer and most of them (11 out of 14
students) participated in similar experiments in the past,
either as part of a research project or during graduate courses
on Software Quality Assurance or Software Evolution
offered at the University of Michigan. Furthermore, 6 out the
14 students (the selected master students) are working as
full-time or part-time developers in the software industry.

Participants were first asked to fill out a pre-study ques-
tionnaire containing five questions. The questionnaire
helped to collect background information such as their role
within the company, their programming experience, and
their familiarity with software refactoring. In addition,
all the participants attended one lecture about software
refactoring and passed six tests to evaluate their perfor-
mance in evaluate and suggest refactoring solutions.

We formed 3 groups. The groups were formed based on
the pre-study questionnaire and the test results to ensure
that all the groups have almost the same average skill level.
We divided the participants into groups according to the
studied systems, the techniques to be tested and developers’
experience.

Each of the first two groups (A and B) is composed of
three masters students and four PhD students. The third
group is composed of eight software developers from the
Ford Motor company, since they agreed to participate only
in the evaluation of their two software systems. It is impor-
tant to note that the third group formed by the developers
from Ford is part of the original developers of the two eval-
uated systems.

TABLE 9
Statistics of the Studied Software Projects

System Release #classes KLOC #Code
smells

#Applicable
Refactorings

Xerces-J v2.7.0 991 240 61 80
JHotDraw v6.1 585 21 22 36
JFreeChart v1.0.9 521 170 51 96
GanttProject v1.10.2 245 41 60 63
Apache Ant v1.8.2 1191 255 61 74
Rhino v1.7R1 305 42 79 50
Log4J v1.2.1 189 31 27 41
Nutch v1.1 207 39 39 24
JDI-Ford v5.8 638 247 83 94
MROI-Ford V6.4 786 264 97 119
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4.5 Techniques Studied

4.5.1 Overview of the used Techniques

To answer our research questions from the perspective of
evaluating our interactive approach performance against
the state-of-the-art refactoring techniques, we compared our
approach to four other existing fully-automated search-based
refactoring techniques and our multi-objective approach
without the interaction component (NSGA-II-Innovization).
Studied techniques includes: Kessentini et al. [19], O’Keeffe
and O’ Cinnide [18], Ouni et al. [9] and Harman et al. [17] that
consider the refactoring suggestion task only from the quality
improvement perspective.

Autors in [19], formulate software refactoring as a mono-
objective search problemwhere the main goal is to fix design
defects and improve quality metrics. Also, [18] proposed
a mono-objective formulation to automate the refactoring
process by optimizing a set of quality metrics. The authors in
[9] and [17] proposed a multi-objective refactoring formula-
tion that generates solutions to fix code smells. Both techni-
ques are non-interactive and fully-automated.

We considered in our experiments another popular
design defects detection and correction tool JDeodorant [21]
that does not use heuristic search techniques. The current
version of JDeodorant is implemented as an Eclipse plug-in
that identifies some types of design defects using quality
metrics and then proposes a list of refactoring strategies to
fix them. Since JDeodorant just recommends a few types of
refactoring with respect to the ones considered by our tool.
We restricted, in this case, the comparison to the same refac-
toring types supported by JDeodorant such as Move Method,
Extract Method and Extract Class.

Our approach differs with the above fully-automated
techniques in two factors: innovization and interactive
features. Therefore, it is important to evaluate the impact
of every factor on the quality of our results. If the innoviza-
tion makes the largest contribution, which is another fully
automated search-based approach, the results cannot sup-
port the hypothesis related to the outperformance of inter-
active refactoring. Thus, we compared our approach to
NSGA-II with the innovization feature using the same
multi-objective optimization but without the use of the inter-
active feature.

All these existing techniques are fully-automated and do
not provide any interaction with the developers to update
their solutions.

Table 10 summarizes the survey organization including
the list of systems and algorithms evaluated by the groups
of participants.

4.5.2 Parameters Setting

Parameter setting influences significantly the performance
of a search algorithm on a particular problem [55]. For this
reason, for each algorithm and for each system, we perform
a set of experiments using several population sizes: 50, 100,
200, 300 and 500. The stopping criterion was set to 100,000
evaluations for all algorithms in order to ensure fairness of
comparison. The other parameters’ values were fixed by
trial and error and are as follows: crossover probability =
0.8; mutation probability = 0.5 where the probability of gene
modification is 0.3; stopping criterion = 100,000 evaluations.

In order to have significant results, for each couple
(algorithm, system), we use the trial and error method [62]
in order to obtain a good parameter configuration. Trial and
error is a fundamental method of problem solving. It is
characterized by repeated and varied attempts of algorithm
configurations.

Regarding the evaluation of fixed code smells, we focus
on the following code smell types: Blob, Spaghetti Code
(SC), Functional Decomposition (FD), Feature Envy (FE),
Data Class (DC), Lazy Class (LC), and Shotgun Surgery
(SS). We choose these code smell types in our experiments
because they are the most frequent and hard to fix based on
several studies [23], [25]. These design flaws are automati-
cally detected using the detection rules of our previous
work [19] based on genetic programming. We have gener-
ated and manually validated, in [19] and several of our
other previous studies, a set of metrics-based rules that can
automatically detect the different types of code smells con-
sidered in our experiments. Table 6 reports the number of
code smells for each system. Only real design flaws that
were manually validated in our previous work [19] are con-
sidered in this validation.

The upper and lower bounds on the chromosome length
used in this study are set to 10 and 350 respectively. Several
SBSE problems including software refactoring are character-
ized by a varying chromosome length. This issue is similar
to the problem of bloat control in genetic programming
where the goal is to identify the tree size limits. To solve
this problem, we performed several trial and error experi-
ments where we assess the average performance of our
algorithm using the hypervolume (HV) performance indi-
cator while varying the size limits between 10 and
500 operations.

4.6 Case Studies Summary

Each group of participants received a questionnaire, a man-
uscript guide to help them to fill the questionnaire, the tools
and results to evaluate and the source code of the studied
systems as described in the following five scenarios:

In the first scenario, we selected a total of 90 classes from
all the systems that include design defects (9 classes to fix
per system). Then we asked every participant to manually
apply refactorings to improve the quality of the systems by

TABLE 10
Survey Organization

Participants
groups

Software
Projects

Approaches Tasks

Group A

Xerces-J Interactive
NSGA-II,
[18],
[9],
JDeodorant [21],
[19],
[17]

– Interactive
refactoring

– Manual
refactoring

– Post-study
questionnaire

– Fixing
bugs

– Adding
features

JHotDraw
FreeChart
GanttProject

Group B

Apache Ant
Rhino
Log4J
Nutch

Group C JDI-Ford

Interactive
NSGA-II,
[18],
[9],
JDeodorant [21]

MROI-Ford

ALIZADEH ET AL.: AN INTERACTIVE AND DYNAMIC SEARCH-BASED APPROACH TO SOFTWARE REFACTORING RECOMMENDATIONS 947

Authorized licensed use limited to: DePaul University. Downloaded on June 26,2025 at 07:53:21 UTC from IEEE Xplore.  Restrictions apply. 



fixing an average of two of these defects. As an outcome of
the this scenario, we have a set of expected refactorings and
we are able to calculate the differences between the recom-
mended refactorings and the expected ones (manually sug-
gested by the developers).

In the second scenario, we asked the developers to evalu-
ate the suggested solutions of our algorithm. We performed
a cross-validation between the ratings of each group to
avoid the computation of the MCmetric being biased by the
developer’s feedback. Thus, the developers in each group
rated results generated by the other developers in the same
group.

In the third scenario, we collected a set of 6 bugs per sys-
tem from the bug reports of the studied release for every
project and asked the groups to fix them based on the refac-
tored and non-refactored version. The tasks are completely
different and they are applied to different packages/classes
of the same version of the systems. Furthermore, the partici-
pants did not know if they are working on the system before
or after refactoring. We did not follow as well any specific
order when asking the developers to work on the tasks.
Only 3 out of the 22 participants worked as part of the
experiments on the systems before refactoring and then the
systems after refactoring. We adapted a counter-balanced
design where we asked every developer to fix 2 bugs on the
version before refactoring and then 2 other bugs in the ver-
sion after refactoring. We selected the bugs that require
almost the same effort to fix in terms of number of changes,
with an average of 15 changes.

In the fourth scenario, we asked the groups to add two
simple features to every system before refactoring, and then
two other features on the system after refactoring. All the
features require almost the same number of changes to be
introduced or deleted with an average of 23 code changes
per feature. In the third and fourth scenarios, the bugs to fix
and features to add are related to the classes that are refac-
tored by the developers when using our tool.

The participants were asked to justify their evaluation of
the solutions and these justifications are reviewed by the
organizers of the study (one faculty member, one postdoc,
one PhD student and one Master’s student). Participants do
not know the particular experiment research questions and
the used algorithms.

In the fifth scenario, we asked the participants to use our
tool during a period of two hours on the different systems
and then we collected their opinions based on a post-study
questionnaire. To better understand subjects’ opinions with
regard to usefulness of our approach in a real setting, the
post-study questionnaire was given to each participant after
completing the refactoring tasks using our interactive
approach and all the techniques considered in our experi-
ments. The questionnaires collected the opinions of the par-
ticipants about their experience in using our approach
compared to manual and fully-automated refactoring tools.
We asked participants to rate their agreement on a Likert
scale from 1 (complete disagreement) to 5 (complete agree-
ment) with the following statements:

1) The interactive dynamic refactoring recommenda-
tions are a desirable feature in integrated develop-
ment environments (IDEs).

2) The interactive manner of recommending refactor-
ings by our approach is a useful and flexible way to
refactor systems compared to fully-automated or
manual refactorings.

The remaining questions of the post-study questionnaire
were about the benefits and also limitations (possible
improvements) of our interactive approach.

4.7 Results and Discussions

Statistical Analysis: Since meta-heuristic algorithms are sto-
chastic optimizers, they can provide different results for the
same problem instance from one run to another. For this
reason, our experimental study is based on 30 independent
simulation runs for each problem instance. The following
statistical tests show that all the comparisons performed
between our approach and existing ones are statistically sig-
nificant based on all the metrics and the systems considered
in our experiments.

We used one-wayANOVA statistical test with a 95 percent
confidence level (a ¼ 5%) to find out whether our sample
results of different approaches are different significantly.
Since one-way ANOVA is an omnibus test, A statistically sig-
nificant result determines whether three or more group
means differ in some undisclosedway in the population.

One-way ANOVA is conducted for the results obtained
from each software project to investigate and compare each
performance metric (dependent variable) between various
studied algorithms (independent variable - groups). We test
the null hypothesis (H0) that population means of each met-
ric are equal for all methods (8 Software Projects : mmetric

M1 ¼
mmetric
M2 ¼ 	 	 	 ¼ mmetric

M7 where metric 2 fG;NF;MC;PR;RCg)
against the alternative (H1) that they are not all equal and at
least one method population mean is different.

There are some assumptions for one-way ANOVA test
which we assessed before applying the test on the data:

Outliers: There were no outliers in the data, as assessed
by inspection of a boxplot for values greater than 1.5 box-
lengths from the edge of the box.

Normal Distribution: Some of the dependent variables
were not normally distributed for each method, as assessed
by Shapiro-Wilk’s test. However, the one-way ANOVA is
fairly robust to deviation from normality. Since the sample
size is more than 15 (there are 30 observations in each
group) and the sample sizes are equal for all groups (bal-
anced), non-normality is not an issue and does not affect
Type I error.

Homogeneity of variances: The one-way ANOVA assumes
that the population variances of the dependent variables are
equal for all groups of the independent variable. If the var-
iances are unequal, this can affect the Type I error rate.
There was homogeneity of variances, as assessed by Lev-
ene’s test for equality of variances ðp > 0:05Þ.

The results of one-way ANOVA tests for all pair of soft-
ware projects and metrics indicates that The group means
were statistically significantly different ðp < :0005Þ and,
therefore, we can reject the null hypothesis and accept the
alternative hypothesis which says there is difference in pop-
ulation means between at least two groups. Table 11 reports
the obtained value of F-statistics with the between and
within groups degree of freedoms equal to 6 and 203,
respectively. In one-way ANOVA, the F-statistic is the ratio
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of variation between sample means over variation within
the samples. The larger value of F-statistics represents the
group means are further apart from each other and are sig-
nificantly different. Also, it shows that the observation
within each group are close to the group mean with a low
variance within samples. Therefore, a large F-value is
required to reject the null hypothesis that the group means
are equal. Our obtained F-statistics results are correspond to
very small p-values.

One-way ANOVA does not report the size of the differ-
ence. Therefore, we calculated Eta squared ðh2Þ which is a
measure of the effect size (strength of association) and it
estimates the degree of association between the indepen-
dent factor and dependent variable for the sample. Eta
squared is the proportion of the total variance that is attrib-
uted to a factor (the “refactoring methods” in this study).
Table 12 reports Eta squared values for each pair of software
projects and metrics. These values shows to what extent dif-
ferent algorithms are the cause of variability of the metrics.
For instance, it says 90 percent of the total variance of metric
G for ApacheAnt software project is accounted for by differ-
ent algorithms effect, not error or other effects.

Tukey post hoc analysis [60] is carried out in order to find
out between which group(s) the significant difference is
occurred. Basically, it tests all possible group comparisons.
However, we only report the results of comparison of our
method and others in Table 13. This table represents the
point estimate of the difference between each pair of means
and is computed from the sample data. Also, it includes the
confidence interval showing the difference between popula-
tion means and is centered on point estimate. If This interval
does not include zero, indicates that the difference between
the means is statistically significant. The 95 percent individ-
ual confidence level indicates that we can be 95 percent con-
fident that each interval contains the real difference for that
particular comparison. The results shows that all pairwise
comparisons between our method and others’ for each pair
of (software / metric) are statistically significant at the 0.05
level except for G and NF of JFreeChart as their results
highlighted in the table of the results. Therefore, the differ-
ence between the means of these two metrics,G and NF, for
JFreeChart project is 0.

To this end, we used the Vargha-Delaney A measure [57]
which is a non-parametric effect size measure. In our con-
text, given the different performance metrics (such as PR,

RC, MC, etc.), the A statistic measures the probability that
running an algorithm B1 (interactive NSGA-II) yields better
performance than running another algorithm B2 (such as
[19], [18], [9], etc.). If the two algorithms are equivalent,
then A = 0.5. In our experiments, we have found the follow-
ing results: a) On small and medium scale software projects
(GanttProject, Rhino, Log4J and Nutch) our approach is bet-
ter than all the other algorithms based on all the perfor-
mance metrics with an A effect size higher than 0.94; and b)
On large scale software projects (JDI-Ford, MROI-Ford,
Apache Ant, Xerces-J, JHotDraw and JFreeChart), our
approach is better than all the other algorithms with an
A effect size higher than 0.87.

Results for RQ1a: Fig. 4 summarizes our findings regard-
ing the obtained precision (PR) and recall (RC) results on
the 10 systems. We found that a considerable number of
proposed refactorings, with an average of more than 82 and
86 percent respectively in terms of precision and recall,
were already applied by the software development team
and suggested manually (expected refactorings). The recall
scores are higher than precision ones since we found that
the refactorings suggested manually by developers are
incomplete compared to the solutions provided by our
approach. In addition, we found that the slight deviation
with the expected refactorings is not related to incorrect
operations but to the fact that the developers were inter-
ested mainly in fixing the severest code smells or improving
the quality of the code fragments that they frequently
modify.

Fig. 4 also confirms the out-performance of our interac-
tive refactoring approach comparing to existing fully-
automated techniques and since we confirmed a statistically
significant difference between the means of metrics, we can
say that these better results are not obtained by chance.
The precision and recall scores were consistent on all the ten
systems which confirm that the results are independent
from the size of the systems, number of refactorings and
number of code smells. The closest results are those obtained
by NSGA-II based on innovization (without interaction)
and the multi-objective refactoring approach of Ouni et al.
This may confirm that the obtained results are more due to
the interaction component of our approach. A detailed quali-
tative discussion will be presented later in RQ1d.

Results for RQ1b. We evaluated also the ability of our
approach to fix several types of code smell. Fig. 4 depicts
the percentage of fixed code smells (NF). It is higher than 82

TABLE 11
F-Value Results from One-Way ANOVA Statistical Tests for

Corresponding Software Project and Metric
between Different Methods

Software G NF MC PR RC

ApacheAnt 335.7 224.8 803.9 379.1 757.1
GanttProject 209.6 593.0 1463.2 379.6 1130.4
JDIFord 135.6 320.3 1036.2 917.3 1032.8
JFreeChart 300.1 776.7 494.7 211.9 663.9
JHotDraw 181.7 408.2 1022.6 158.4 663.8
Log4J 297.8 306.2 477.8 617.9 1044.9
MROIFord 189.5 474.8 1260.2 1228.8 1217.2
Nutch 333.7 361.3 408.1 269.9 658.9
Rhino 121.2 606.2 872.8 598.0 702.2
XercesJ 155.0 214.5 598.0 492.3 633.8

TABLE 12
Effect Size Values (Eta squared ðh2Þ) for Corresponding

Software Project and Metric

Software G NF MC PR RC

ApacheAnt 0.908 0.869 0.960 0.918 0.957
GanttProject 0.861 0.946 0.977 0.918 0.971
JDIFord 0.789 0.898 0.966 0.962 0.966
JFreeChart 0.899 0.958 0.936 0.862 0.952
JHotDraw 0.843 0.923 0.968 0.824 0.951
Log4J 0.898 0.900 0.934 0.948 0.969
MROIFord 0.839 0.929 0.972 0.971 0.971
Nutch 0.908 0.914 0.923 0.889 0.951
Rhino 0.782 0.947 0.963 0.946 0.954
XercesJ 0.821 0.864 0.946 0.936 0.949
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percent on all the ten systems, which is an acceptable score
since developers may reject or modify some refactorings
that fix some code smells because they do not consider
them very important (their goal is not to fix all code smells

in the system) or the current version of the code becomes
stable. Some systems, such as Rhino and Gantt, have a
higher percentage of fixed code smells with an average of
more than 88 percent. This can be explained by the fact that

Fig. 4. Boxplots of G, NF, MC, PR, and RC on all the ten systems based on 30 independent runs. (Continue on the next page.) Label of the methods:
M1 (Our approach) = Interactive + Innovization NSGA-II, M2 = Innovization NSGA-II, M3 = Kessentini et al.[19], M4 = Ouni et al.[9], M5 = Harman
et al.[17],M6 = O’Keeffe et al.[18],M7 = Jdeodorant [21].
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these systems include a higher number of code smells than
others.

However, the percentage of fixed code smells (NF) is
slightly lower than some fully-automated refactoring tech-
niques such as [19] and [9]. This is can be explained by the
reason that the main goal of developers during the interac-
tion process is not to fix the maximum number the code
smells detected in the system (which was the goal of [19]
and [9]) thus they rejected or modified some refactorings
suggested by our tool. In addition, our approach is based
on a multi-objective algorithm to find a trade-off between
improving the quality and reducing the number of changes.
Therefore, the slight loss in NF is explained by the fact
that we are not considering fixing code smells as one of the
objectives, and justified by a better improvement in the
quality of the refactored system.

Results for RQ1c. Fig. 4 and Table 13 show that the ref-
actorings recommended by the approach and applied by
developers improved the quality metrics value (G) of the
ten systems. For example, the average quality gain for the
two industrial systems was the highest among the ten sys-
tems with more than 0.3. The improvements in the quality
gain confirm that the recommended refactorings helped to
optimize different quality metrics. The functionality attri-
bute has the lowest improvement on the different systems.
This may be explained by the fact that refactoring is
expected to preserve the behavior of existing functionalities.
Our interactive approach clearly also outperforms existing
fully-automated techniques. One of the reasons could be
related to the fact that the optimization of the quality attrib-
utes is considered as part of the fitness functions unlike
some of the existing techniques.

Results for RQ1d: We report the results of our empirical
qualitative evaluation (MC) in Fig. 4. As reported in this
figure, the majority of the refactoring solutions recom-
mended by our interactive approach were correct and
approved by developers. On average, for all of our ten stud-
ied projects, 87 percent of the proposed refactoring opera-
tions are considered as semantically feasible, improve the
quality and are found to be useful by the software develop-
ers of our experiments. The highest MC score is 93 percent
for the Gantt project and the lowest score is 86 percent for
JFreeChart. Thus, it is clear that the results are independent
of the size of the systems and the number of recommended

refactorings. Most of the refactorings that were not manu-
ally approved by the developers were found to be either
violating some post-conditions or introducing design
incoherence.

Fig. 4 shows that our approach provides significantly
higher manual correctness results (MC) than all other
approaches having MC scores respectively between 60 and
78 percent, on average asMC scores on the different systems.

Qualitative Evaluation of RQ1 Results. To provide more
qualitative evaluation, we considered some of the feedback
that we received from the developers at Ford since they are
part of the original developers of these systems. For exam-
ple, these developers rejected a set of move methods
because they believed that these methods should stay in
their original class. The original class in this case is responsi-
ble for implementing several security constraints (e.g., login
information) around database access. The number of secu-
rity constraints is very high and they were implemented in
several methods grouped into one class. Although this set
of methods created a blob, the developers assessed that they
should stay together because there is a logic behind imple-
menting them in that way, and splitting the behavior may
require a redesign of the application.

In another case, the developers elected to extract a class
that regroups several methods implementing a parser to
extract dealer information. However, this refactoring was
not recommended by our approach since the methods were
located in a small class that did not contain any code
smell or quality violation symptoms. Thus, the refactoring
applied by the developers was more based on the features
implemented in the methods. This refactoring is hard to rec-
ommend even with the considered semantics/textual simi-
larity measures since few comments exist in these methods
and furthermore their implementation structures look very
different. These observations explain the reasons why
some the refactorings recommended by our approach was
rejected by the developers and also the differences with
those that are manually recommended by the developers.

In general, we found that most of the common patterns in
the Pareto front are not individual operations, but a short
sequence of refactorings. Thus, we believe that most of these
patterns are targeting specific quality issues and hence
the applied refactorings are not individual operations but
small refactoring patterns. This observation was found to be

Fig. 4. (Continued ).
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TABLE 13
Tukey Post hoc Analysis Results between our Method(M1) and others Reported by Mean Difference and

95 percent Confidence Intervals

Label of the methods:M1 (Our approach) = Interactive + Innovization NSGA-II,M2 = Innovization NSGA-II,
M3 = Kessentini et al. [19],M4 = Ouni et al. [9],M5 = Harman et al. [17],M6 = O’Keeffe et al. [18],M7 = Jdeodorant [21].
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valid when we manually checked the interactive results of
our tool.

A general interesting observation from the experiments
is that evolutionary search involves both diversification and
convergence, so the question is does innovization empha-
size convergence at the cost of sacrificing divergence? We
would argue against this, for the following reasons: In the
context of our refactoring problem, it is very rare to observe
no overlap between non-dominated solutions for several
reasons such as the large size of refactoring solutions and
the fact that some common quality issues should be fixed
(high priority). In fact, at least few quality issues (e.g., code
smells) need to be fixed independently from the other objec-
tives. Thus, it is normal to always observe some overlap
between the refactoring solutions. Regarding diversifica-
tion, the ranking of the refactoring solutions is only used
after the generation of the Pareto front so this ranking is not
part of the fitness function used in the search. The goal is to
implicitly explore the front based on the feedback of the
developers to identify the region of interest and prioritize
the solutions that contain common patterns. We believe that
these common patterns distinguish non-dominated solu-
tions from dominated ones. The diversification is not penal-
ized because we do not consider the innovization heuristic
as part of the fitness functions but as a post-processing step
to prioritize solutions (and not eliminating them).

We compared the results of our approach (M1) and
innovization NSGA-II method (M2) in Fig. 4 and Table 13
in order to contrast the impact of interactivity component.
The best solution (at the knee point) based on the innoviza-
tion feature (without interaction) was evaluated based on
all studied metrics. The results confirm that our interactive
approach outperforms NSGA-II with the only use of inno-
vation (without interaction) in terms of G, NF, MC, PR, and
RC. However, the results of NSGA-II with innovization are
better than regular multi-objective refactoring approaches
(e.g., Ouni et al., etc.) thus it is clear that the positive results
of our approach are due to the combination of the two fac-
tors: innovization and interactive features.

The superior performance of our interactive approach
can be explained by several factors. First, [19], [18] and [17]
use only structural indications (quality metrics) to evaluate
the refactoring solutions and thus a high number of refac-
torings lead to a semantically incoherent design. Our
approach reduces the number of semantic incoherencies
when suggesting refactorings and during the interaction

with the developers. Second, the innovization component
improved the quality of the suggested refactoring solutions
by using an interactive approach as compared to a regular
NSGA-II where the developers need to select one solution
from the Pareto front that cannot be updated dynamically.
Third, JDeodorant proposes some pre-defined patterns to
fix some types of code smells that cannot be sometimes
generalized.

To summarize and answer RQ1, the experimentation
results confirm that our interactive approach helps the par-
ticipants to refactor their systems efficiently by finding
more relevant refactoring solutions and improve the quality
of all the ten systems under study. In addition, our interac-
tive approach provides better results, on average, than all of
the existing fully-automated refactoring techniques.

Results for RQ2. We evaluated the ability of our approach
to help software developers to find quickly good refactor-
ings based on an efficient ranking of the proposed opera-
tions. We compared the MC@k and PR@k where k was
varied between 1, 5, 10 and 15 as described in Figs. 5 and 6
where show that the lowest MC@1 is 93 percent and the
highest is 100 percent on the different ten systems confirm-
ing that the highest-ranked refactoring was almost always
correct and relevant for the developers.

The MC@15 presents the lowest results, which is to be
expected since we evaluated the manual correctness of the
top 15 recommended refactorings at several interactions
and this increases the probability that it contains few irrele-
vant refactorings. However, the average MC@15 still could
be considered acceptable with an average of more than 81
percent. The same observations are also valid for the PR@k;
however the results are a bit lower than for MC@k. The
average PR@k results were respectively 94, 89, 84 and 80
percent for k = 1, 5, 10 and 15. Thus, it is clear that the rank-
ing function used by our interactive approach to explore the
Pareto front is efficient.

Considering three other metrics NAR (percentage of
accepted refactorings), NMR (percentage of modified refac-
torings) and NRR (percentage of rejected refactorings), we
seek to evaluate the efficiency of our interactive approach to
rank the refactorings. We recorded these metrics using a
feature that we implemented in our tool to record all the
actions performed by the developers during the refactoring
sessions. Fig. 7 shows that, on average, more than 71 percent
of the recommended refactorings were applied by the
developers. In addition, an average of 17 percent of the

Fig. 6. PR@k results on the different systems with k = 1, 5, 10 and 15.Fig. 5. MC@k results on the different systems with k = 1, 5, 10 and 15.
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recommended refactorings were modified by the develop-
ers, while 12 percent of the suggested refactorings were
rejected by the developers. Thus, it is clear that our recom-
mendation tool successfully suggested a good set of refac-
torings to apply.

To conclude, our approach efficiently ranked the recom-
mended refactorings and helped software developers to
quickly find good refactorings recommendations.

Results for RQ3a. Fig. 8 shows that the time is reduced by
61 and 57 percent to finalize respectively the two tasks of
fixing bugs when programmers worked on the refactored
program using our interactive approach. These results out-
perform the productivity improvements obtained when
programmers worked on similar tasks of fixing bugs of the
refactored programs by Ouni et al. [9] and Harman et al.
[17]. For Ouni et al., the productivity improvements are
between 41 and 37 percent while Harman et al. [17] are
between 33 and 31 percent. The results are correlated with
the quality improvements of the evaluated programs, as dis-
cussed in the previous sections. Thus, a better quality of the
software may increase the productivity of programmers
when fixing bugs.

Results for RQ3b. Similar results to RQ3a are obtained
for the tasks of adding new features. Fig. 8 shows that the
time is reduced by 51 and 48 percent to finalize respectively
the two tasks of adding new features when programmers
worked on the refactored program using our interactive
approach. These results outperform the productivity im-
provements obtained when programmers worked on simi-
lar tasks of adding features of the refactored programs by
Ouni et al. [9] and Harman et al. [17]. For Ouni et al., the
productivity improvements are between 38 and 31 percent
while Harman et al. [17] are between 29 and 23 percent.
The results are correlated with the quality improvements
of the evaluated programs. Thus, a better quality of the soft-
ware may increase the productivity of programmers when
adding new features. Overall, the productivity gain when
programmers worked on adding new features is lower than
the one observed for fixing bugs. This could be related to
the fact that the complexity of adding new features was
higher than fixing bugs and the locations where refactorings
are introduced.

The metric (TP) to measure the time to perform the dif-
ferent bugs fixing and adding new features task on the sys-
tems before and after refactoring included the execution
time of the different (interactive and fully-automated)

refactoring techniques to generate the new systems after
refactoring. While the execution time of our interactive app-
roach is slightly higher than fully-automated approaches
with an average of 6 minutes comparing to Ouni et al. and
Harman et al. on the different systems used in both scenar-
ios, the overall time that developers spent to perform the
new tasks is much lower when working on the new systems
after refactoring based on our approach comparing to the
state of the art. Thus, the extra manual effort required by our
approach is compensated by higher productivity and better
accuracy of the results. We believe that the slightly higher
execution time by our interactive approach comparing to
fully automated search-based refactoring despite the extra-
manual effort is explained by the fact that the user feedback
can reduce dramatically the search space to converge toward
better recommendations. Furthermore, the efficient ranking
of refactorings to be inspected by programmers help a lot in
reducing the interaction time. Finally, we want to highlight
that programmers spend considerable time evaluating long
list of refactoring recommendations after the execution of
fully-automated approaches which is comparable to the
manual interaction effort required during the execution of
our interactive approach.

In the following, we describe a qualitative example to
illustrate the observed time reduction when updating a
feature on the refactored code. The scenario consists of
modifying the existing loading and saving of CSV files
feature in Gant. The updated feature will enable the modi-
fication of colors used in the charts to highlight specific
project tasks to match different priorities (e.g., red for high
priority task, green for low priority task, etc.) then modify
the current CSV format to support the use of colors in the
Gantt chart.

To implement this feature, several methods have to be
modified that append to different classes before refactoring.
The main class related to this feature is GanttOptions that
includes 68 methods and highly coupled with 14 classes
which can be considered as a blob. Our interactive refactor-
ing tool proposed a sequence of 29 refactorings to be applied
to this class and some related classes (CSVOptions and
UIConfiguration). The sequence of refactorings included
Extract class, Move field, Move method, PushDown field,
PushDown method and Extract method that refactored the
GanttOptions as illustrated in Fig. 9.

Fig. 8. The average productivity difference (TP) results on the different
tasks performed by the three groups using our interactive approach,
Ouni et al. [9], Harman et al. [17].

Fig. 7. The median NMR, NRR and NAR results in the different systems.
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The new version of GanttOptions contained only 43
methods and several methods and fields were moved
from/to CSVOptions and UIConfiguration. Thus, the devel-
opers introduced less number of changes to update the
methods related to changing the colors of the chart tasks
and the format of the CSV files since they were cohesively
moved to GanttOptions after refactorings rather than being
distributed between CSVOptions and UIConfiguration.
These refactorings not only reduced the number of changes
but also improved the coupling and cohesion within these
classes since other methods and fields were moved from
CSVOptions which reduced as well the time for developers
to identify the relevant methods and fields to modify to inte-
grate the new features.

Results for RQ3c. The post-study questionnaire results
show the average agreement of the participants was 4.8 and
4.3 based on a Likert scale for the first and second state-
ments (discussed in Section 4.6), respectively. This confirms
the usefulness of our approach for the software developers
considered in our experiments.

We summarize in the following the feedback of the
developers. Most of the participants mention that our
interactive approach is faster than manual refactoring
since they spent a long time with manual refactoring to
find the locations where refactorings should be applied.
For example, developers spend time when they decide to
extract a class to find the methods to move to the newly
created class or when they want to move a method then it
takes time to find the best target class by manual explora-
tion of the source code. Thus, the developers liked the
functionality of our tool that helps them to modify a

refactoring and finding quickly the right parameters based
on the recommendations.

Our interactive algorithm automatically suggests a list of
possible target classes ranked based on the history of
changes and semantic similarity. Furthermore, refactorings
may affect several locations in the source code, which is a
time-consuming task to perform manually, but they can
perform it instantly using our tool.

The participants found our tool helpful for both floss
refactoring, to maintain a good quality design and also for
root canal refactoring to fix some quality issues such as code
smells. The developers justify their conclusions by the fol-
lowing interesting observations about our tool: a) the list of
recommended refactorings helps them to choose the desired
refactoring very quickly, b) our tool offers them the possibil-
ity to modify the source code (to add new functionality)
while doing refactoring since the list of recommendations is
updated dynamically. So developers can switch between
both activities: refactoring and modifying the source code to
modify existing functionalities. c) our tool allows develop-
ers to access all the functionality of the IDE (e.g., Eclipse). d)
the suggested refactorings by our interactive tool can fix
code smells (root canal refactoring) or improve some quality
metrics (floss canal refactoring) due to the use of the multi-
objective approach.

Another important feature that the participants mention
is that our interactive approach allows them to take the
advantages of using multi-objective optimization for soft-
ware refactoring without the need to learn anything about
optimization and exploring explicitly the Pareto front to
select one ideal solution. The implicit exploration of the

Fig. 9. GanttOptions before and after refactoring.
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Pareto front in an interactive fashion represents an impor-
tant advantage of our tool along with the dynamic update
of the recommended list of refactoring using innovization.
In fact, the developers found a lot of difficulties using the
multi-objective tool of [54] to explore the Pareto front to find
a good refactoring solution. In addition, they did not appre-
ciate the long list of refactoring suggested by [54] since they
want to take control of modifying and rejecting some refac-
torings. In addition, the validation of this long list of refac-
torings is time-consuming. Thus, they appreciate that our
tool suggests refactoring one by one and update the list
based on the feedback of developers.

The participants also suggested some possible improve-
ments to our interactive approach. Some participants
believe that it will be very helpful to extend the tool by add-
ing a new feature to apply automatically some regression
testing techniques to generate test cases to test applied
refactorings. Another possibly suggested improvement is to
use some visualization techniques to evaluate the impact of
applying a refactoring sequence.

5 THREATS TO VALIDITY

Following the methodology proposed by [58], there are
four types of threats that can affect the validity of our
experiments. We consider each of these in the following
paragraphs.

Conclusion validity is concerned with the statistical
relationship between the treatment and the outcome.
We addressed conclusion threats to validity by performing
30 independent simulation runs for each problem instance
and statistically analyzing the obtained results using one-
way ANOVA followed by Tukey’s post-hoc test. However,
the parameter tuning of the different optimization algo-
rithms used in our experiments creates another internal
threat that we need to evaluate in our future work. The
parameters’ values used in our experiments are found by
trial-and-error, which is commonly used in the SBSE com-
munity [59]. However, it would be an interesting perspec-
tive to design an adaptive parameter tuning strategy [56]
for our approach so that parameters are updated during the
execution in order to provide the best possible performance.
In addition, our multi-objective formulation treats the
different types of refactoring with the same weight in terms
of complexity when calculating one of the fitness functions.
However, some refactoring types can be more complex than
others to apply by developers.

Internal validity is concerned with the causal relation-
ship between the treatment and the outcome. We dealt with
internal threats to validity by performing 30 independent
simulation runs for each problem instance. This makes it
highly unlikely that the observed results to be explained by
random variation. The second internal threat is related to
the variation of correctness and speed between the different
groups when using our approach and other tools such as
JDeodorant. In fact, our approach may not be the only rea-
son for the superior performance because the participants
have different programming skills and familiarity with
refactoring tools.

To counteract this, we assigned the developers to differ-
ent groups according to their programming experience so

as to reduce the gap between the different groups and we
also adapted a counter-balanced design. Regarding the
selected participants, we have taken precautions to ensure
that our participants represent a diverse set of software
developers with experience in refactoring, and also that the
groups formed had, in some sense, a similar average skill
set in the refactoring area. The results obtained by the devel-
opers from Ford and those by the graduate students are
consistent. The evaluated open source and industrial sys-
tems provided similar conclusions in our experiments. The
industrial systems are mainly evaluated by the original
developers and the results are still consistent with the open
source systems.

Construct validity is concerned with the relationship
between theory andwhat is observed. To evaluate the results
of our approach, we selected solutions at the knee point
when we compared our approach with fully-automated
refactoring approaches, but the developers may select a dif-
ferent solution based on their preferences to give different
weights to the objectives when selecting the best refactoring
solution. The different developers involved in our experi-
mentsmay have divergent opinions about the recommended
refactorings in terms of correctness and readability. We con-
sidered in our experiments the majority of votes from the
developers. We selected the majority of votes as the tech-
nique to aggregate the data since it is similar to real-world
situations. Almost all of our industrial collaborators in the
refactoring area are selecting major refactoring strategies
based on discussions between the architects to adopt the
best alternative. The architects discuss several possibilities
to refactor the current architecture and they will decide the
best one based on the majority. We adopted this strategy
for our experiments to simulate real-world scenarios. For the
selection threat, the participant diversity in terms of experi-
ence could affect the results of our study. We addressed the
selection threat by giving a lecture and examples of refactor-
ings already evaluated with arguments and justification.
For the fatigue threat, we did not limit the time to fill the
questionnaire and we also sent the questionnaires to the par-
ticipants by email and gave them the required time to com-
plete each of the required tasks. We believe that one of the
principal strengths of our approach is the interaction compo-
nent with the developer sincemany aspects of software qual-
ity are subjective and impossible to formalize precisely using
quality metrics alone. The interaction with the developer
(i.e., developer feedback) can help to improve the refactoring
recommendations, by critically augmenting the objective
metric values with subjective developer insight. However, a
better fitness function may indeed reduce the interaction
effort. Thus, the use of the QMOOD model in a fitness func-
tion can be considered as a possible threat since the use of
quality metrics to solutions’ evaluation is subjective.

External validity refers to the generalizability of our find-
ings. In this study, we performed our experiments on eight
different widely used open-source systems belonging to dif-
ferent domains and having different sizes, and two indus-
trial projects. However, we cannot assert that our results
can be generalized to other applications, and to other practi-
tioners. Future replications of this study are necessary
to confirm our findings. Further empirical studies are also
required to deeply evaluate the performance of the
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interactive NSGA-II using the same problem formulation.
The first threat is the limited number of participants and
evaluated systems, which externally threatens the generaliz-
ability of our results. In addition, our study was limited to
the use of specific refactoring types and types of code smell.
Future replications of this study are necessary to confirm
our findings.

6 RELATKED WORK

We summarize, in the following, existing studies in the area
of software refactoring. We classify them into three catego-
ries: manual, automated and interactive refactoring.

6.1 Manual Refactoring

We start, this section, by summarizing existing manual
approaches for software refactoring. In Fowler’s book [23] a
non-exhaustive list of low-level design problems in source
code has been defined. For each type of code smell, a list of
possible refactorings is suggested that can be applied by the
developers. Du Bois et al. [24] start from the hypothesis that
refactoring opportunities correspond to those that improve
cohesion and coupling metrics, and use this to perform
an optimal distribution of features over classes. They ana-
lyze how refactorings manipulate coupling and cohesion
metrics, and how to identify refactoring opportunities that
improve these metrics. However, this approach is limited to
only certain refactoring types and a small number of quality
metrics. Murphy-Hill et al. [25], [26] proposed several tech-
niques and empirical studies to support refactoring activi-
ties. In [26], [27], the authors proposed new tools to assist
software developers in applying refactoring such as selec-
tion assistant, box view, and refactoring annotation based
on structural information and program analysis techniques.

Recently, Ge and Murphy-Hill [28] have proposed a new
refactoring tool called GhostFactor that allows the developer
to transform code manually, but checks the correctness
of the transformation automatically. BeneFactor [29] and
WitchDoctor [30] can detect manual refactorings and then
complete them automatically. Tahvildari et al. [31] also pro-
pose a framework of object-oriented metrics used to suggest
to the software developer refactoring opportunities to
improve the quality of an object-oriented legacy system.
Dig [32] proposes an interactive refactoring technique to
improve the parallelism of software systems. Other contribu-
tions are based on rules that can be expressed as assertions
(invariants, pre- and post-conditions). All these techniques
are more concerned around the correctness of manually
applied refactorings rather than interactive recommendations.

The use of invariants has been proposed to detect parts of
the program that require refactoring [33]. In addition,
Opdyke [34] has proposed the definition and use of pre-
and post-conditions with invariants to preserve the behav-
ior of the software when applying refactorings. Hence,
behavior preservation is based on the verification/satisfac-
tion of a set of pre- and post-condition. All these conditions
are expressed as first-order logic constraints expressed over
the elements of the program.

To summarize, manual refactoring is a tedious task for
developers that involves exploring the software system to
find the best refactoring solution that improves the quality
of the software and fix design defects.

6.2 Automated Refactoring

To automate refactoring activities, new approaches have
been proposed. JDeodorant [35] is an automated refactoring
tool implemented as an Eclipse plug-in that identifies
certain types of design defect using quality metrics and
then proposes a list of refactoring strategies to fix them.
Search-based techniques [36] are widely studied to auto-
mate software refactoring and consider it as an optimization
problem, where the goal is to improve the design quality
of a system based mainly on a set of software metrics.
The majority of existing work combines several metrics in a
single fitness function to find the best sequence of refactor-
ings. Seng et al. [37] have proposed a single-objective
optimization approach using a genetic algorithm to suggest
a list of refactorings to improve software quality. The work
of O’Keeffe et al. [18] uses various local search-based tech-
niques such as hill climbing and simulated annealing
to provide an automated refactoring support. They use the
QMOOD metrics suite [38] to evaluate the improvement in
quality.

Kessentini et al. [19] have proposed single-objective com-
binatorial optimization using a genetic algorithm to find
the best sequence of refactoring operations that improve the
quality of the code by minimizing as much as possible
the number of design defects detected in the source code.
Kilic et al. [40] explore the use of a variety of population-
based approaches to search-based parallel refactoring, find-
ing that local beam search could find the best solutions.
Harman et al. [17] have proposed a search-based approach
using Pareto optimality that combines two quality metrics,
CBO (coupling between objects) and SDMPC (standard
deviation of methods per class), in two separate fitness func-
tions. Ouni et al. [41] proposed also a multi-objective refac-
toring formulation that generates solutions to fix code
smells. Cinnide et al. [42] have proposed a multi-objective
search-based refactoring to conduct an empirical investiga-
tion to assess some structural metrics and to explore rela-
tionships between them. They have used a variety of search
techniques (Pareto-optimal search, semi-random search)
guided by a set of cohesion metrics.

The majority of existing multi-objective refactoring tech-
niques propose as output a set of non-dominated refactor-
ing solutions (the Pareto front) that find a good trade-off
between the considered maintainability objectives. This
leaves it to the software developers to select the best solu-
tion from a set of possible refactoring solutions, which can
be a challenging task as it is not natural for developers to
express their preferences in terms of a fitness functions
value. Thus, the exploration of the Pareto front is still per-
formed manually, which limits the use of multi-objective
search techniques to address software engineering prob-
lems. An intelligent exploration of the Pareto front is
required to expand the applicability of multi-objective tech-
niques for search-based software engineering problems.

In summary, developers should accept the entire refac-
toring solution and existing tools do not provide the flexibil-
ity to adapt the suggested solution in existing fully-
automated refactoring techniques. Furthermore, existing
automated refactoring tools execute the whole algorithm
again to suggest new refactorings after a number of code
changes are introduced by developers, rather than simply
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trying to update the proposed solutions based on the new
code changes. While automation is important, it is essential
to understand the points at which human oversight, inter-
vention, and decision-making should impact on automa-
tion. Human developers might reject changes made by any
automated programming technique. Especially if they feel
that they have little control, there will be a natural reluc-
tance to trust and use the automated refactoring tool [6].

6.3 Interactive Refactoring

Interactive techniques have been generally introduced in
the literature of Search-Based Software Engineering and
especially in the area of software modularization. Hall et al.
[43] treated software modularization as a constraint satisfac-
tion problem. The idea of this work is to provide a baseline
distribution of software elements using good design princi-
ples (e.g., minimal coupling and maximal cohesion) that
will be refined by a set of corrections introduced interac-
tively by the designer.

The approach, called SUMO (Supervised Re-modulariza-
tion), consists of iteratively feeding domain knowledge into
the remodularization process. The process is performed by
the designer in terms of constraints that can be introduced
to refine the current modularizations. Initially, the system
begins with generating a module dependency graph from
an input system. This dependency is based on the correla-
tion between software elements (coupling between meth-
ods, shared attributes etc.). Possible modularizations are
then generated from the graph using multiple simulated
authoritative decompositions. Then, using a clustering tech-
nique called Bunch, an initial set of clusters is generated
that serves as an input to SUMO.

The SUMO algorithm provides a hypothesized modulari-
zation to the user, who will agree with some relations, and
disagree with others. The user’s corrections are then inte-
grated into the modularization process, to generate a more
satisfactory modularization. The SUMO algorithm does not
necessarily rely on clustering techniques, but it can benefit
from their output as a starting point for its refinement process.

Bavota et al. [44] presented the adoption of single objective
interactive genetic algorithms in software re-modularization
process. Themain idea is to incorporate the user in the evalua-
tion of the generated remodularizations. Interactive Genetic
Algorithms (IGAs) extend the classic Genetic Algorithms
(GAs) by partially or entirely involving the user in the deter-
mination of the solutions fitness function. The basic idea of
the Interactive GA (IGA) is to periodically add a constraint to
the GA such that some specific components shall be put in a
given cluster among those created so far. Initially, the IGA
evolves similarly to the non-interactive GA.

After a user-defined set of iterations, the individual with
the highest fitness value is selected from the population set
(in the case of single-objective GA) or from the first front
(in the case of multi-objective GA) and presented to the
user. After analyzing the current modularization, the user
provides feedback in terms of constraints dictating for
example, that a specific element needs to be in the same
cluster as another one. Although user feedback is important
in guaranteeing convergence, it is essential not to overload
the user by asking for a decision about all the current rela-
tionships between elements, especially for a large system.

Overall, the above existing studies of interactive remodula-
rization are limited to few types of refactoring such asmoving
classes between packages and splitting packages. Further-
more, the interaction mechanism is based on the manual
evaluation of proposed remodularization solutions which
could be a time-consuming process. The proposed interactive
remdoularization techniques are also based on a mono-objec-
tive algorithm and did not consider multiple objectives when
evaluating the solutions. A recent study [45] extended our
previous work [22] to propose an interactive search based
approach for refactoring recommendations. The developers
have to specify a desired design at the architecture level then
the proposed approach try to find the relevant refactorings
that can generate a similar design to the expected one. In our
work, we do not consider the use of a desired design, thus
developers are not required to manually modify the current
architecture of the system to get refactoring recommenda-
tions. Furthermore, developers maybe interested to change
the architecturemainlywhen theywant to introduce an exten-
sive number of refactorings that radically change the architec-
ture to support new features.

Several possible levels of interaction are not considered
by existing refactoring techniques. It is easy for developers
to identify large classes or long methods that should be
refactored, but they find it is difficult, in general, to locate a
target class when applying a move method refactoring [20].
In addition, existing refactoring tools do not update their
recommended refactoring solutions based on the software
developer’s feedback such as accepting, modifying or reject-
ing certain refactoring operations.

To address the above-mentioned limitations, we pro-
posed in this paper a new way for software developers to
refactor their software systems as a sequence of transforma-
tions based on different levels of interaction, implicit explo-
ration of non-dominated refactoring solutions and dynamic
adaptive ranking of the suggested refactorings.

7 CONCLUSION AND FUTURE WORK

We proposed, in this paper, an interactive recommendation
tool for software refactoring that dynamically adapts and
suggests refactorings to developers based on their feedback
and introduced code changes. Our interactive approach
allows developers to benefit from search-based refactoring
tools without explicitly involving any knowledge about
optimization and multi-objective optimization algorithms.
In fact, the exploration of the non-dominated refactoring
solutions is implicitly performed based on the interaction
with the developers. The feedback received from the devel-
opers is used to reduce the search space and converge to
better solutions. To evaluate the effectiveness of our tool,
we conducted a human study on a set of software develop-
ers who evaluated the tool and compared it with the state-
of-the-art refactoring techniques. Our evaluation results
provide strong evidence that our tool improves the applica-
bility of software refactoring, and proposes a novel way for
software developers to refactor their systems interactively.

Future work involves validating our technique with
additional refactoring types, programming languages and
code smell types in order to conclude about the general
applicability of our methodology. Furthermore, we only
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focused, in this paper, on the recommendation of refactor-
ings. We plan to extend the approach by automating the test
and verification of applied refactorings. In addition, we will
consider the importance of code smells during the correc-
tion step using previous code changes, class complexity,
etc. Another future research direction related to our work is
to build an interactive software engineering framework that
applies a similar approach to other software engineering
problems such as the next release problem.

The exploration of Pareto front is a very challenging
problem, and this work is the first to apply an interactive
approach on a large number of Pareto optimal refactoring
solutions. Thus, several extensions could be proposed to
make the interaction with the users better and less time-
consuming including the use of machine learning which is
part of our future work.
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