
Less is More: From Multi-Objective to
Mono-Objective Refactoring via Developer’s

Knowledge Extraction
Vahid Alizadeh
CIS Department

University of Michigan
Dearborn, Michigan, USA

alizadeh@umich.edu

Houcem Fehri
CIS Department

University of Michigan
Dearborn, Michigan, USA

houcemf@umich.edu

Marouane Kessentini
CIS Department

University of Michigan
Dearborn, Michigan, USA

marouane@umich.edu

Abstract—Refactoring studies either aggregated quality met-
rics to evaluate possible code changes or treated them separately
to find trade-offs. For the first category of work, it is challenging
to define upfront the weights for the quality objectives since
developers are not able to express them upfront. For the second
category of work, the number of possible trade-offs between
quality objectives is large which makes developers reluctant to
look at many refactoring solutions. In this paper, we propose,
for the first time, a way to convert multi-objective search into
a mono-objective one after interacting with the developer to
identify a good refactoring solution based on his preferences. The
first step consists of using a multi-objective search to generate
different possible refactoring strategies by finding a trade-off
between several conflicting quality attributes. Then, an unsuper-
vised learning algorithm clusters the different trade-off solutions,
called the Pareto front, to guide the developers in selecting their
region of interests and to reduce the number of refactoring
options to explore. Finally, the extracted preferences from the
developer are used to transform the multi-objective search into a
mono-objective one by taking the preferred cluster of the Pareto
front as the initial population for the mono-objective search and
generating an evaluation function based on the weights that are
automatically computed from the position of the cluster in the
Pareto front. Thus, the developer will just interact with only one
refactoring solution generated by the mono-objective search. We
selected 32 participants to manually evaluate the effectiveness of
our tool on 7 open source projects and one industrial project.
The results show that the recommended refactorings are more
accurate than the current state of the art.

Index Terms—Search Based Software Engineering, Interactive
Refactoring, Software Quality

I. INTRODUCTION

Software restructuring, or refactoring [1], is critical to

improve software quality and developers’ productivity, but can

be complex, expensive, and risky [2]–[4]. A recent study [5]

shows that developers are spending over 50% of their time

struggling with existing code (e.g. understanding, restructur-

ing, etc.) rather than creating new code.

While code-level refactoring, such as Move-Method, Pullup-
Method, etc, is widely studied and well-supported by tools

[6]–[16], understanding the refactoring rationale, or the

preferences of developers, is still lacking and yet not well

supported. In our recent survey, supported by an NSF I-Corps

1 project, with 127 developers at 38 medium and large compa-

nies (Google, eBay, IBM, Amazon, etc.), 84% of face-to-face

interviewees confirmed that most of the existing automated

refactoring tools detect and recommend hundreds of code-level

issues (e.g. anti-patterns and low quality metrics/attributes) and

refactorings but do not specify where to start or how they can

be relevant for their context and preferences. This observation

is consistent with another recent study [17]. Furthermore,

refactoring is a human activity that cannot be fully automated

and requires developers’ insight to accept, modify, or reject

some of these recommendations because the developers un-

derstand the problem domain intuitively and may have a clear

target design in mind. Several studies reveal that automated

refactoring does not always lead to the desired architecture

even when the quality issues are well detected, due to the

subjective nature of software design [12], [14], [16], [18]–

[21]. However, manual refactoring can be error-prone and

time-consuming [22], [23].

Few studies have been proposed, recently, to interactively

evaluate refactoring recommendations by developers [17],

[24]–[27]. The developers can provide feedback about the

refactored code and introduce manual changes to some of

the recommendations. However, this interactive process can

be expensive since developers must evaluate a large num-

ber of possible refactoring strategies/solutions and eliminate

irrelevant ones. Both interactive and automated refactoring

approaches have to deal with a big challenge to consider

many quality attributes for the generation of refactoring solu-

tions. Thus, refactoring studies either aggregated these quality

metrics to evaluate possible code changes or treated them

separately to find trade-offs [12], [16]–[19], [21], [25], [28].

However, it is challenging to define upfront the weights for

the quality objectives since developers are not able to express

them upfront. Furthermore, the number of possible trade-offs

between quality objectives is large which makes developers

reluctant to look at many refactoring solutions due to the time-

consuming and confusing process.

In this paper, we propose an approach that takes advantage

1https://www.nsf.gov/news/special reports/i-corps

181

2019 19th International Working Conference on Source Code Analysis and Manipulation (SCAM)

2470-6892/19/$31.00 ©2019 IEEE
DOI 10.1109/SCAM.2019.00029

Authorized licensed use limited to: DePaul University. Downloaded on June 26,2025 at 07:51:12 UTC from IEEE Xplore.  Restrictions apply. 



of both existing categories of refactoring work. Thus, we

propose, for the first time, a way to convert multi-objective

search into a mono-objective one after few interactions with

the developer. The first step consists of using a multi-objective

search, based on the evolutionary algorithm NSGA-II [29], to

generate a diverse set of refactoring strategies by finding a

trade-off between several conflicting quality attributes. Then,

an unsupervised learning algorithm clusters the different trade-

off solutions, called the Pareto front, to guide the developers

in selecting their region of interests and reduce the number

of refactoring options to explore. Finally, the extracted pref-

erences from the developer are used to transform the multi-

objective search into a mono-objective one by taking the

preferred cluster of the Pareto front as the initial population

for the mono-objective search and generating an evaluation

function based on the weights that are automatically calculated

from the center of the preferred cluster in the Pareto front.

Therefore, the developer will just interact with only one

refactoring solution generated by the mono-objective search.

Our approach is taking the advantages of mono-objective

search, multi-objective search, clustering and interactive com-

putational intelligence. Multi-objective algorithms are power-

ful in terms of diversifying solutions and finding trade-offs

between many objectives but generate many solutions as an

output. The clustering and interactive algorithms are useful

in terms of extracting developers’ knowledge and preferences.

Mono-objective algorithms are the best in terms of optimiza-

tion power once the evaluation function is well-defined and

generate only one solution as an output. We selected 32

active developers to manually evaluate the effectiveness of

our tool on 6 open source projects and one industrial system.

The results show that the participants found their desired

refactorings faster and more accurate than the current state

of the art. A tool demo of our interactive refactoring tool of

this paper and an appendix containing all the details of the

experiments can be found in the following link [30].

II. MOTIVATIONS

While successful tools for refactoring have been proposed,

several challenges are still to be addressed to expand the

adoption of refactoring tools in practice. To investigate the

challenges associated with current refactoring tools, we con-

ducted a survey, as part of an NSF I-Corps project, with 127

professional developers at 38 medium and large companies

including eBay, Amazon, Google, IBM, and others. 112 of

these interviews were conducted face-to-face.

The question we encounter most during our industrial

collaborations in refactoring is ”We agree that this is a
problem, but what should we do?” Although code-level anti-

patterns can largely be automated, higher-level refactoring —

such as redistributing functionality into different components,

decoupling a large code base into smaller modules, redesigning

to a design pattern— requires abstractions determined by

human architects. In these cases, the architect usually has

a desired design in mind as the refactoring target, and the

developer needs to conduct a series of low-level refactorings

to achieve this target. Without explicit guidance about which

path to take, such refactoring tasks can be demanding: It took

a software company several weeks to refactor the architecture

of a medium-size project (40K LOC) [27]. Several books

[2], [31], [32] on refactoring legacy code and workshops on

technical debt [33] present the substantial costs and risks of

large-scale refactorings. For example, Tokuda and Batory [34]

presented two case studies where architectural refactoring

involved more than 800 steps, estimated to take more than

2 weeks.

Prior work [35] shows that even semi-automated tools for

lower-level refactorings have been underutilized. Given that

fully automatic refactoring usually does not lead to the desired

architecture and that a designer’s feedback should be included,

we propose an interactive architecture refactoring recom-
mendation system to integrate higher-level abstractions from

humans with lower-level refactoring automation. Over 77% of

the interviewees reported that the refactorings they perform

do not match the capabilities of low-level transformations

supported by existing tools, and 86% of developers confirmed

that they need better design guidance during refactoring: ”We
need better solutions of refactoring tasks that can reduce the
current time-consuming manual work. Automated tools provide
refactoring solutions that are hard and costly to repair because
they did not consider our design needs.”

Based on our extensive experience working on licensing

refactoring research prototypes to industry, developers always

have a concern on expressing their preferences upfront as an

input for a tool to guide refactoring suggestions. They prefer

to get insights from some generated refactoring solutions then

decide which quality attributes they want to improve. However,

several existing refactoring tools fail to consider the developer

perspective, as the developer has no opportunity to provide

feedback on the refactoring solution as it is being created.

Furthermore, as development must halt while the refactoring

process executes, fully-automated refactoring methods are not

useful for floss refactoring where the goal is to maintain

good design quality while modifying existing functionality.

The developers have to accept the entire refactoring solution

even though they prefer, in general, step-wise approaches

where the process is interactive and they have control of the

refactorings being applied. Determining which quality attribute

should be improved and how is never a pure technical problem

in practice. Instead, high-level refactoring decisions have to

take into account the trade-offs between code quality, available

resources, project schedule, time-to-market, and management

support. Based on our survey, it is very challenging to ag-

gregate quality objectives into one evaluation function to find

good refactoring solutions since developers are not able, in

general, to express their preferences upfront. Figure 1 shows

an example of a Pareto front of non-dominated refactoring

solutions improving the QMOOD [19] quality attributes of a

Gantt Project generated using an existing tool [26]. QMOOD

is one of the widely accepted software quality models in

industry based on our previous collaborations with industry

and recent studies [26], [27], [36]–[38]. While developers

182

Authorized licensed use limited to: DePaul University. Downloaded on June 26,2025 at 07:51:12 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1: The output of a multi-objective refactoring tool

[26] finding trade-offs between QMOOD quality attributes on

ganttproject v1.10.2

were interested to give a feedback for some of the refactoring

solutions but they expected to see only one refactoring solution

in the future after this interaction. This means after the first

round of optimization and evaluation, the developer wants to

have a single personalized solution. The extraction of develop-

ers’ knowledge from the interaction data is beyond the scope of

existing refactoring tools. Furthermore, existing search-based

software engineering approaches did not explore converting

multi-objective into mono-objective search after knowledge

extraction. While multi-objective search algorithms are known

to be good in diversifying solutions but they cannot beat well-

formulated mono-objective search algorithms in terms of the

optimization power.

III. APPROACH OVERVIEW

Our proposed approach includes three main phases. First,

we use multi-objective optimization to find a set of non-

dominated refactoring solutions capable of improving the

quality of the software. Second, we cluster these solutions and

obtain the center of each cluster to reduce the exploration effort

of the Pareto-front by the decision maker. Third, we extract

automatically the preferences and utilize them to transform

the multi-objective problem to a mono-objective one after

the user’s interaction and evaluation of the recommended

refactoring solutions. Finally, the output of the mono-objective

search is a single solution fitting to the user’s expectations

and preferences then the developer can interact with that

solution if needed and continue the execution of the mono-

objective algorithm until selecting a final refactoring solution.

The pseudo code of our algorithm is described in the appendix

[30]. In the following, we will explain, in details, the steps of

our proposed technique.

A. Phase 1: Multi-Objective Refactoring

Considering the goals and objectives of refactoring a soft-

ware, this challenging task can be formulated as a multi-

objective optimization problem as follow:

Minimize F (x) = (f1(x), f2(x), ..., fM (x)),

Subject to x ∈ S,

S = {x ∈ Rm : h(x) = 0, g(x) ≥ 0};

where S is the subset of all feasible solution, Rm, which

satisfy the inequality and equality constraints, g(x) and h(x),
respectively. The functions fi are objective or fitness functions.

In multi-objective optimization, the quality of an optimal

solution is determined by dominance. The set of feasible

solutions that are not dominated with respect to each other

is called Pareto-optimal or Non-dominated set.

The result of the first phase of our approach, as it is shown in

the Figure 1, is a set of Pareto-optimal refactoring solutions. In

the following subsections, we briefly summarize the adaptation

of multi-objective search to the software refactoring problem.

1) Solution Representation: We encode a refactoring

solution as an ordered vector of multiple refactoring op-

erations. Each operation is defined by an action (eg.

move method, extract class, etc.) and its specific control-

ling parameters (e.g. source and target classes, attributes,

methods, etc.). We considered a set of the most impor-

tant and widely used refactorings in our experiments: Ex-

tract Class/SubClass/SuperClass/Method, Move Method/Field,

PullUp Field/Method, PushDown Field/Method, Encapsulate

Field and Increase/Decrease Field/Method Security. During the

process of population initialization or mutation operation of

the algorithm, the refactoring operation and its parameters are

formed randomly. Therefore, due to the random nature of the

process, it is crucial to evaluate the feasibility of a solution

meaning to preserve the software behavior without breaking

it. This evaluation is based on a set of specific pre- and post-

conditions for each refactoring operation [39].

2) Fitness Functions: We used the Quality Model for

Object-Oriented Design (QMOOD) [40] as a means of es-

timating the effect of a refactoring operation on the quality of

a software. This model is developed based on the international

standard for software product quality measurement and widely

used in industry. QMOOD is a comprehensive way to assess

software quality and includes four levels. Using the first two

levels, Object-oriented Design Properties and Design Quality
Attributes, as fitness functions, we formulated the problem

as discovering refactorings to improve the design quality of

a software system. Therefore, the fitness functions to be

calculated are: Understandability, Functionality, Reusability,

Effectiveness Flexibility, Extendibility, Complexity, Cohesion

and Coupling. We considered the relative change of these

quality attributes after applying a refactoring solution as the

fitness function formulated as follows:

FitnessFunctioni =
Qafter

i −Qbefore
i

Qbefore
i

(1)

where Qbefore
i and Qafter

i are the value of the quality metric

i before and after applying a refactoring solution, respectively.

B. Phase 2: Clustering Refactoring Solutions and Extracting
Developer Preferences

One of the most challenging and tedious tasks for the user

during every multi-objective optimization process is the deci-

sion making. Since many Pareto-optimal solutions are offered,

183

Authorized licensed use limited to: DePaul University. Downloaded on June 26,2025 at 07:51:12 UTC from IEEE Xplore.  Restrictions apply. 



it is up to the user to select among them which requires

exploration and evaluation of the Pareto-front solutions.

The main goal of this step is to cluster and categorize the

solutions based on their similarity in the objective space. These

clusters of solutions help the user to have an overview of

the possible existing options. Therefore, this technique gives

the user a more clear initial step of exploration where she

can initiate the interaction by evaluating each cluster center

or representative member. Based on our previous refactoring

collaborations with industry, developers are always highlight-

ing the time consuming and confusing process to deal with

the large population of Pareto-front solutions: ”where should

I start to find my preferred solution?”. This observation is valid

for various SBSE applications using multi-objective search

[27].

1) Clustering the Pareto-front: Clustering is an unsuper-

vised learning method to discover a meaningful underlying

structure and pattern between a set of unlabelled data. It puts

the data into groups where the similarity of the data points

within each group is maximized while keeping a minimized

similarity between the groups.

Determining the optimal number of clusters is a funda-

mental issue in clustering techniques. One of the methods to

overcome this issue is to optimize a criterion where we try to

minimize or maximize a measure for the different number of

clusters formed on the data set. For this purpose, we utilized

Calinski Harabasz (CH) Index which is an internal clustering

validation measure based on two criteria: compactness and

separation [41]. CH assesses the clustering outcomes based

on the average sum of squares between and within clusters.

Therefore, we execute the clustering algorithm on the Pareto-

front solutions with a various number of components as the

input. The CH score is calculated for each execution, and the

result with the highest CH score is recognized as the optimal

way of clustering our data.

After determining the best number of clusters, we em-

ployed a probabilistic model-based clustering algorithm called

”Gaussian Mixture Model” (GMM). GMM is a soft-clustering

method using a combination of Gaussian distributions with

different parameters fitted on the data. The parameters are

the number of distributions, Mean, Co-variance, and Mixing

coefficient. The optimal values for these parameters are esti-

mated using Expectation-Maximization (EM) algorithm [42].

EM trains the variables through two steps iterative process.

After the convergence of EM, the membership degree of each

solution to a fitted Gaussian or cluster is kept for preference

extraction step. Furthermore, in order to find a representative

member of each cluster, we measure the corresponding density

for each solution and select the solution with the highest

density value.

The line chart of Pareto-front solutions after clustering is

shown in Figure 2. Compared to the original chart in Figure

1, the color of each line indicates its cluster and the solutions

marked with triangles are the cluster representative member.

2) Interaction and preference extraction: The results of

multi-objective refactoring after clustering are presented to the

Figure 2: The output of phase 2 (Clustering) on ganttproject

v1.10.2.

user in various interactive tables and charts alongside with

extensive analysis to explain and guide the process of deci-

sion making. These explanations are automatically generated

using statistical analysis and investigating the content of the

solutions and clusters.

The explanations of Pareto-front assist the user to gain a

vibrant picture of the available options, costs, and benefits.

Furthermore, by clustering similar solutions, it requires less

effort to initiate the exploration and finally making a decision.

The user may begin to evaluate the cluster center solutions

or expand the search to the other solutions in the cluster.

The interaction can be performed at the cluster, solution, and

refactoring operation levels depending on the user’s desire.

The feedback is quantified to a continuous score in the range

of [-1,1].

The developer can evaluate a solution by modifying its refac-

toring operations (edit, add, delete, re-order) or just rate the

whole solution or cluster. After the developers interaction,

Solution score (Scoresi ) and Cluster score (Scoreck ) are

computed as the average score of operations in a solution and

the average score of solutions in a cluster, respectively.

The cluster of solutions with the highest score is considered

as the region of interest in the solution space. It indicates

the preferred objectives, code locations, and refactoring oper-

ations. For instance, if the solutions in the selected cluster tend

to emphasize on improving Extendibility by applying mostly

Generalization category of refactoring operations on certain

packages or classes of the software, we consider these factors

as the user preferences in the execution of the next phase of

our approach.

For this purpose, we compute the weighted probability of

refactoring operations (RWP ) and target classes of the source

code (CWP ) as follow:

RWPp =

∑
si∈cj

γij × (|rp ∈ si|)∑
rm∈Ref

∑
si∈cj

γij × (|rm ∈ si|) (2)

CWPq =

∑
si∈cj

γij × (|clq ∈ si|)∑
clm∈Cls

∑
si∈cj

γij × (|clm ∈ si|) (3)

where j is the index of selected cluster, si is the solution

vector, γij is the membership weight of solution i to the cluster

j, r is refactoring action, Ref is the set of all refactoring

operations, and Cls is the set of all classes in the source code.

184

Authorized licensed use limited to: DePaul University. Downloaded on June 26,2025 at 07:51:12 UTC from IEEE Xplore.  Restrictions apply. 



C. Phase 3: Preference-base Mono-objective Refactoring

One of the main contributions of this paper is the ability to

convert a multi-objective algorithm into a mono-objective one

after interacting with the developer to extract his preferences

and knowledge. Mono-objective algorithms are known to be

the best in terms of optimization but require that the fitness

function should be well defined based on the decision maker’s

preferences. The Multi-objective Evolutionary Algorithm used

in Phase 1 might not provide high-quality solutions in the

region of interest of the developer because of the high

dimensionality nature of the problem and the need to find

trade-offs. Therefore, it is important to consider the user

preferences extracted in Phase 2.

The goal of this phase is to use the preferences extracted

from the developer after the multi-objective optimization to

transform the problem into a single objective optimization

problem by aggregating objectives according to the user’s

preferences. This transformation gives the decision maker a

single solution in the region of interest. Consequently, our

proposed approach is a combination of all three categories of

preference-based search where the preferences are expressed

after the first evolutionary process, then they are incorporated

to guide the single objective optimization.

One way to convert a multi-objective optimization problem

to a mono-objective problem and achieve a single solution

is called the Weighted Sum Method (WSM). In this method,

the single preference fitness function is computed as a linear

weighted sum of multiple objectives. The main drawback of

the WSM method is that it needs the weights parameters

to be given. Fortunately, in our case, those parameters are

computed automatically from the decision maker preferences

of the interactive optimization process (preferred cluster) in

the objectives space (quality attributes). Thus, the weight of

one or more objectives can get the value 0 (or almost) if the

selected cluster by the developer penalized them while favor-

ing other objectives. Also, the WSM is not computationally

expensive unlike the other scalarization methods. Therefore,

the optimization problem can be formulated as:

Minimize PF (X) =

M∑

i=1

ωifi(x),

Subject to X ∈ S,

ωi ≥ 0;

M∑

i=1

ωi = 1;

Where PF (X) is the single scalar preference function, and

weights ωi reflects the a priori preferences of the user over the

objectives. The weights are a tool to steer the search along the

Pareto-front into a direction determined by the user. This way,

the decision maker is offered a single solution that corresponds

to his interests and reduces on him the burden of having to go

through multiple solutions.

In order to solve the converted mono-objective problem, we

adopted a standard Genetic Algorithm (GA). To adapt the

Algorithm 1: Preference-based Mono-objective

Optimization

Input : Preferences (P),

Preferred Cluster (PC),

Cluster Center (CC)

Output: RecommendedSolution

begin Calculating Objective’s Weight

NormalizeAll(PC);

Wi ← NormalizeUnitSum(CC);

begin Mono-objective Optimization

initialPopulation ← PC;

if size(initialPopulation) ¡ N then
initialPopulation + = fillPopulation();

while ¬ stoppingCondition() do
customSelection();

Crossover();

customMutation();

fitness← weightedSum(fi, wi);
evaluate(fitness);

RecommendedSolution ← getFittest();

Return RecommendedSolution;

GA algorithm to our refactoring context, we use the same

solution representation and quality fitness functions as reported

in phase 1. Algorithm 1 explains the steps of this phase.

We begin by normalizing the values of each fitness function

separately for all solutions in the preferred cluster. Then, we

pick the center of the cluster and normalize this solution’s

fitness values. We use the result as the aggregation weights in

WSM where the condition
∑M

i=1 ωi = 1 is satisfied. Therefore,

we assign the importance of the objectives accordingly based

on the intuition and preferences of the user.

The obtained single fitness function is employed to evaluate

the solutions in the execution of adapted GA. We consider

the preferences extracted in the previous phase, to customize

the components of GA via Preference-based initial population

generation and Preference-based Mutation/Selection operators.

Instead of generating the initial population randomly, we

acquire the user preferred cluster as the elite set of solution

from which the search process is initiated. Thus, we do not

generate solutions randomly for the mono-objective GA but

we take the solutions in the preferred cluster as the initial

population thus we do not lose the knowledge extracted from

the developer. Since the number of solutions in the preferred

cluster might be less than the required size, we form new

individuals to fill the gap. The new solutions are produced

based on CWP and RWP probability distribution. It means,

for each new solution, we pick the operation and its target

class attribute from a distribution aligned with the preferences

of the user.

The preference probability distribution for code locations and

refactoring operations are used during the mutation process

185

Authorized licensed use limited to: DePaul University. Downloaded on June 26,2025 at 07:51:12 UTC from IEEE Xplore.  Restrictions apply. 



Figure 3: The output of phase 3 (Mono-objective) on GanttPro-

ject v1.10.2 system

similarly.

The selection operator which is used to keep the most valuable

solutions of the population is customized to consider the

distance of a solution to the region of interest. Therefore,

being closer to the preferences and having higher fitness

value are both measured to be factors of selecting an elite

solution. Finally, the solutions are evaluated via the prefer-

ence function aggregated from multiple objectives. When the

stopping condition is satisfied, the single optimal solution is

recommended to the user. Similar to Phase 1, the user can

interact with this solution via editing/adding/removing the

refactoring operations.

If the developer is still not satisfied, he can proceed with

the search process in two ways: 1) going back to Phase 2 and

selecting another cluster. 2) returning to Phase 1 and executing

the multi-objective optimization again where, in this time, the

approach is customized to accommodate the prior knowledge

of the preferences. The result of Phase 3 is represented in

Figure 3. As it is shown, at this step, the user is required

to only interact with one customized solution where it takes

shorter effort and time and produces less confusion.

IV. EVALUATION

A. Research Questions

We defined three main research questions to measure

the correctness, relevance and benefits of our interactive

clustering-based multi-objective refactoring tool comparing

to existing approaches that are based on interactive multi-

objective search [43], fully automated multi-objective search

(Ouni et al.) [44] and fully automated deterministic tool not

based on heuristic search (JDeodorant) [45]. A tool demo of

our interactive refactoring tool and supplementary appendix

materials (questionnaire, setup of the experiments, statistical

analyses, and detailed results) can be found in our study’s

website 2. The appendix includes:(a) Study-steps; (b) Pre/Post-

study-questionnaires (QMOOD, experience, comments, etc.);

(c) Parameters-tuning;(d) Box-plots/statistical-tests to give

more details than the median.

The research questions are as follows:

2Demo and supplementary appendix materials can be found in the following
link: https://sites.google.com/view/scam2019

• RQ1: Benefits. To what extent can our approach make

relevant recommendations for developers compared to

existing refactoring techniques?

• RQ2: The relevance of developers’ knowledge ex-
traction. To what extent can our approach reduce the

interaction effort, comparing to existing refactoring tech-

niques, while quickly identifying relevant refactoring

recommendations?

• RQ3: Tool usefulness. How do developers evaluate the

relevance of our tool in practice (post-study survey)?

B. Experimental Setup

We considered a total of seven systems summarized in

Table I to address the above research questions. We selected

these seven systems because of their size, have been actively

developed over the past 10 years and extensively analyzed

by the competitive tools considered in this work. UTest3 is a

project of our industrial partner used for identifying, reporting

and fixing bugs. We selected that system for our experiments

since five developers of that system agreed to participate

in the experiments and they are very knowledgeable about

refactoring (they are part of the maintenance team). Table I

provides information about the size of the subject systems (in

terms of number of classes and KLOC).

To answer RQ1, we asked a group of 32 participants to

identify and manually evaluate the relevance of the refactoring

solutions that they selected using four other tools. The first tool

is an existing interactive multi-objective refactoring approach

proposed by Mkaouer et al. [24], [26] but the interactions

were limited to the refactorings (accept/reject) and there is no

clustering of the Pareto front or learning mechanisms from the

interaction data. The second tool is an interactive clustering

based multi-objective approach proposed by Alizadeh et al.

[27] however they did not consider the developers’ knowledge

extraction neither the use of mono-objective search to directly

converge towards one refactorings solution after extracting

developers preferences. The comparison with these tools will

help us evaluating the main new contribution of this paper

related to converting multi-objective to a mono-objective one

after extracting the developers’ preferences from exploring the

clusters and the Pareto front. We have also compared our

IMMO approach to two fully-automated refactoring tools by

means of Ouni [44] and JDeodorant [45]. Ouni [44] proposed

a multi-objective refactoring formulation based on NSGA-II

that generates a solution to maximize the design coherence and

refactorings reuse from previous releases. JDeodorant [45] is

an Eclipse plugin to detect bad smells and apply refactorings.

As JDeodorant supports a lower number of refactoring types

with respect to the ones considered by our tool, we restrict

our comparison with it to these refactorings. We used these

two competitive tools to evaluate the benefits of the interaction

feature in helping developers identifying relevant refactorings

especially with the preferences extraction feature and the

mono-objective search.

3Company anonymized for double-blind.

186

Authorized licensed use limited to: DePaul University. Downloaded on June 26,2025 at 07:51:12 UTC from IEEE Xplore.  Restrictions apply. 



Table I: Statistics of the studied systems.
System Release #Classes KLOC
ArgoUML v0.3 1358 114
JHotDraw v7.5.1 585 25
GanttProject v1.10.2 241 48
UTest v7.9 357 74
Apache Ant v1.8.2 1191 112
Azureus v2.3.0.6 1449 117
JFreeChart v1.0.9 521 170

We preferred not to use the antipatterns and internal quality

indicators as proxies for estimating the refactorings relevance

since the developers manual evaluation already includes the

review of the impact of suggested changes on the quality.

Furthermore, not all the refactorings that improve any quality

attributes are relevant to the developers, which is one of the

main motivations of this work. The only rigorous way to

evaluate the relevance of our tool is the manual evaluation of

the results by active developers. This manual evaluation score,

MC, consists of the number of relevant refactorings identified

by the developers over the total number of refactorings in the

selected solution.

Unlike fixing bugs, refactoring is a very-subjective activity

and there is no unique solution to refactor a code/design thus it

is very difficult to construct a gold-standard for large-systems

which makes calculating the recall very challenging. Does the

deviation from an expected refactoring solution means that the

recommendation is wrong or simply another way to refactor

the code? The context of our work is related to incremental

refactoring rather than the rare root canal refactoring where

developers will look at the whole architecture/system to make

major refactorings. In this context of incremental refactoring,

the main factor is the precision. In addition, developers can

check via our tool the impact of the refactoring solutions

on the overall code quality using many attributes. Thus, they

continue to interactively evaluate and apply refactorings until

that they are satisfied in terms of improving the quality

attributes that they consider them concerning. Our tool enables

the developers to evaluate the current quality of the system

then tuning the search algorithm to focus on specific locations

of the code based on their needs. With the current large-size of

the systems, it is unrealistic to look for all possible refactoring

strategies targeting the whole project which is not also the

scope of this paper(root-canal refactoring).

Participants were first asked to fill out a pre-study ques-

tionnaire containing six questions. The questionnaire helped

to collect background information such as their role within

the company, their programming experience, and their famil-

iarity with software refactoring. Although the vast majority

of participants are already familiar with refactoring as part of

their job and graduate studies, all the participants attended one

lecture of two hours on software refactoring by the organizers

of the experiments. The details of the selected participants can

be found in Table II, including their programming experience

(years) and level of familiarity with refactoring. Each partici-

pant was asked to assess the meaningfulness of the refactorings

recommended after using up-to two out of the five tools on

up-to two different systems to avoid the training threat. The

participants did not ”only” evaluate the suggested refactorings

but were asked to configure, run and interact with the tools

Table II: Selected programmers.
System #Subjects Avg. Prog. Exp. Avg. Refactoring Exp.
ArgoUML 5 7.5 Very High
JHotDraw 5 8 Very High
Azureus 5 9.5 High
GanttProject 5 7 High
UTest 5 15.5 Very High
Apache Ant 5 9 Very High
JFreeChart 5 7 Very High

on the different systems. The only exceptions are related to

the five participants from the industrial partner where they

agreed to evaluate only the industrial software. We assigned

the tasks to the participants according to the studied systems,

the techniques to be tested and developers’ experience. Each

of the five tools has been evaluated at least one time on each

of the seven systems. 3 out of 32 participants were asked

to refactor two projects to ensure that all the seven projects

are refactored using the five different tools. To mitigate the

training threat, the counter-balanced design ensured that these

three participants: (1) did not evaluate the same system using

two different tools; (2) did not evaluate the same tool more

than one time (even on different projects) and(3) did not

evaluate the same type of technique more than one time. Thus,

if the participant used a multi-objective tool, then he/she will

evaluate JDeodorant (deterministic) on another project.

To answer RQ2, we measured the time (T) that developers

spent to identify the best refactoring strategies based on their

preferences and the number of refactorings (NR). Furthermore,

we evaluated the number of interactions (NI) required on the

Pareto front comparing to the one required once the mono-

objective search is executed. This evaluation will help to

understand if we efficiently extracted the developer preferences

after the Pareto-front interactions. For this research question,

we decided to limit the comparison to only the interactive

multi-objective work of Mkaouer et al. [24], [26] and Alizadeh

et al. [27] since they are the only ones offering interaction

with the users and it will help us understand the real impact

of the knowledge extraction and mono-objective features (not

supported by existing studies) on the refactoring recommen-

dations and interaction effort.

To answer RQ3, we collected the opinions of participants

based on a post-study questionnaire. To better understand

subjects’ opinions with regard to usefulness and usability of

our approach in a real setting, the post-study questionnaire was

given to each participant after completing the refactoring tasks

using our approach and all the techniques considered in our

experiments. The questionnaires collected the opinions of the

participants about their experience in using our tool compared

to the remaining tools used in these experiments and their past

experience.

The stopping criterion was set to 100,000 evaluations for

all search algorithms in order to ensure fairness of comparison

(without counting the number of interactions since it is part

of the users’ decision to reach the best solution based on

his/her preferences). The mono-objective search was limited

to 10,000 evaluations after the interactions with the user. The

other parameters’ values are as follows for both the multi-

objective and mono-objective algorithms: crossover probabil-

ity = 0.4; mutation probability = 0.7 where the probability of

187

Authorized licensed use limited to: DePaul University. Downloaded on June 26,2025 at 07:51:12 UTC from IEEE Xplore.  Restrictions apply. 



gene modification is 0.5. Each parameter has been uniformly

discretized in some intervals. Values from each interval have

been tested for our application. Finally, we pick the best values

for all parameters. Hence, a reasonable set of parameter’s

values have been experimented.

C. Results

Results for RQ1: Benefits. Figure 4 summarizes the man-

ual validation results of our IMMO approach comparing to the

state of the art as evaluated by the participants. It is clear from

the overall results that interactive approaches generated much

more relevant refactorings to the programmers comparing to

the automated tools of Ouni et al. and JDeodorant. Among

the interactive approaches, IMMO outperformed the existing

interactive approaches of Mkaouer et al. and Alizadeh et al.

which may confirm the importance of extracting the develop-

ers’ preferences and the performance of mono-objective search

in terms of optimization when the fitness function is well-

defined based on knowledge extraction from the user. On

average, for all of our seven studied projects, 89% of the

proposed refactoring operations are considered to be useful

by the software developers of our experiments. The remaining

approaches have an average of 83%, 71%, 67%, and 56%

respectively for Alizadeh et al. (interactive with clustering),

Mkaouer et al. (interactive multi-objective approach), Ouni et

al. (fully automated multi-objective approach) and JDeodorant

(deterministic non-search based approach). The highest MC

score is 96% for the Azureus project, and the lowest score

is 86% for JHotDraw. The participants were not guided on

how to interact with the systems, and they mainly looked to

the source code to understand the impact of recommended

refactorings.

When comparing manually the results of the different

tools, we found that automated refactorings generate a lot of

false positive and noise of developers. Both Ouni et al. and

JDeodroant tools recommended a large number of refactorings

comparing the interactive tools where several of them are not

interesting for the context of the developers thus they reject

them even if they are correct. For instance, the developers

of the industrial partner rejected several recommendations

from these automated tools simply because they are related

to a stable code or code fragments out of their interests.

The majority of them will not change a code out of their

ownership as well. Furthermore, they were not interested to

blindly change anything in the code just to improve quality

attributes. Comparing to the remaining interactive approaches,

we found that some of the refactoring solutions of IMMO will

never be proposed by Mkaouer et al. or Alizadeh et al. since

they are emphasizing specific objectives than others. In fact,

one of the main challenges of multi-objective search is the

noise introduced by sacrificing some objectives and trying to

diversify the solutions. Thus, the use of mono-objective search

when the preferences of the user are extracted is powerful

both in terms of interaction and optimization. The mono-

objective search helped to focus on specific code locations and

quality attributes rather than wasting the optimization power

Figure 4: Average manual evaluations, MC, on the 7 systems.

Figure 5: The median number of recommended refactorings,

NR, of the selected solution on the 7 systems.

Figure 6: The median number of required interactions (ac-

cept/reject/modify/selection), NI, on the 7 systems.

on multiple objectives. To conclude, our IMMO approach out-

performed the four remaining refactoring approaches in terms

of recommending relevant refactoring solutions for developers

(RQ1).

Results for RQ2: The relevance of developers’ knowl-
edge extraction. Figures 5, 6 and 7 give an overview about

the number of refactorings of the selected solution, number

of required interaction and the time, in minutes, using our

tool, the interactive clustering approach of Alizadeh et al.,

and the interactive multi-objective approach of Mkaouer et al.

Based on the results of Figure5, it is clear that our approach

significantly reduced the number of recommended refactorings

188

Authorized licensed use limited to: DePaul University. Downloaded on June 26,2025 at 07:51:12 UTC from IEEE Xplore.  Restrictions apply. 



Figure 7: The average execution time, T, in minutes on the 7

systems.

comparing to both other interactive approaches while increas-

ing the manual correctness as described in RQ1. The highest

number of refactorings was observed on the industrial system

with 34 refactorings using IMMO, 48 using Alizadeh et al. and

72 refactorings using Mkaouer et al. It may be explained by

the size and the quality of this system along with the fact that

it was evaluated by some of the original developers of UTest.

The lower number of recommended refactorings using IMMO

comparing to interactive approaches is mainly related to the

elimination of the noise in multi-objective search to handle

multiple quality attributes and the extraction of developers

preferences. It is normal to see fewer refactorings when the

search space is reduced which was the case of IMMO.

Figure 6 shows that IMMO required much fewer developer

interactions than the remaining interactive approaches. For

instance, only 13 interactions to modify, reject and select

refactorings were observed on JFreeChart using our approach

while 24 and 37 interactions were needed respectively for

Vahid et al. and Mkaouer et al. The reduction of the number of

interactions are mainly due to the move from multi-objective

to mono-objective search after one round of interactions since

the developers will not deal anymore with a set of solutions

in the front but only one.

The participants also spent less time to find the most

relevant refactorings on the different systems compared to the

remaining interactive approaches. For instance, the average

time is reduced by over 65% comparing to Mkaouer et al. for

the case of JHotDraw (from 62 minutes to just 21 minutes).

The time includes the execution of the multi-objective and

mono-objective search (if any), the clustering (if any) and the

different phases of interaction until the developer is satisfied

with a specific solution. The drop of the execution time is

mainly explained by the fast execution of the mono-objective

search and the reduced search space after the interactions with

the developers.

Figure 8 shows a qualitative example extracted from our

experiments using IMMO on the Gantt project based on the

four interaction phases. After the generation of the Pareto

front, the clustering algorithm of the non-dominated refactor-

ing solutions identified three different main clusters for the

two objectives selected by the developer (extendibility and

effectiveness). During the first phase, the developer selected

the cluster with id 0 as the preferred one after exploring several

refactoring solutions in that cluster including mainly the solu-

tion located at the center of the cluster. Thus, the next phase

took the solutions in the id 0 cluster and generated an initial

population for the mono-objective genetic algorithm, and the

center of the selected cluster was used to generate the weights

for the fitness function. The output of the mono-objective

search is one refactoring solution (instead of many solutions

like the multi-objective search) that optimize better the se-

lected objectives than all the solutions in the preferred cluster.

Finally, the interactions with the user (accept/reject/modify

some refactorings) on that solution helped to converge towards

a better final solution by continuing the execution of the mono-

objective search.

Results for RQ3: Impact. We did a post-study question-

naire to collect the feedback of the developers about the

different evaluated refactoring tools. We found that 26 out

the 32 participants highlighted that they preferred IMMO

comparing to the remaining tools because of mainly the ability

to interact with one solution (instead of a front) and the

fast improvement of the refactoring results after just a few

interactions. One of the participants submitted the following

message: ”It is really great to see only refactoring solutions
meeting my needs after just a couple of interactions!”.

21 out the 32 participants appreciated the combination of

multi-objective and mono-objective search algorithms. They

found that multi-objective search was useful to get some

insights about several possible strategies to improve the code

then the mono-objective powerful in generating better so-

lutions based on their feedback. For instance, one of the

developers commented the following: ”I had no idea about
the beginning from where to start but looking to the first set
of recommendations and their code impact, I had a clear
idea on what quality metrics I need to target then it was
easy to just give feedback to only one strategy (solution).”
29 out the 32 participants found that the major refactoring

suggestions of both Ouni et al. and JDeodorant hard to evaluate

and understand. They found the lack of interactions as a

main limitation since they have to accept or reject the whole

refactoring suggestions and it is difficult to estimate their

impacts. The participants noticed, in the survey, that they

were satisfied with the the considered quality attributes and

refactoring types by our tool. They did not suggest to add

new types of refactoring or quality attribute.

V. THREATS TO VALIDITY

Conclusion validity. Since we used a variety of computa-

tional search and machine learning algorithms, the parameter

tuning used in our experiments creates an internal threat that

we need to evaluate in our future work. The parameters’ values

used in our experiments are found by trial-and-error. However,

it would be an interesting perspective to design an adaptive

parameter tuning strategy for our approach so that parameters

are updated during the execution in order to provide the best

189

Authorized licensed use limited to: DePaul University. Downloaded on June 26,2025 at 07:51:12 UTC from IEEE Xplore.  Restrictions apply. 



Figure 8: A qualitative example of three executions extracted from our experiments on Ganttproject to illustrate the process

of converting a multi-objective search into a mono-objective one.

possible performance. Another conclusion threat is the number

of interactions with the developers since we did not force

them to use the same interaction effort which may sometimes

explain the out-performance of our approach. However, the

participants were given the same maximum amount of time to

use the tool (limited to 3 hours).

Internal validity. The variation of correctness and speed

between the different groups when using our approach and

other tools can be one internal threat. Our approach may not

be the only reason for the superior performance because the

participants have different programming skills and familiarity

with refactoring tools. To counteract this, we assigned the

developers to different groups according to their programming

experience so as to reduce the gap between the different

groups, and we also adopted a counter-balanced design. Re-

garding the selected participants, we have taken precautions to

ensure that our participants represent a diverse set of software

developers with experience in refactoring, and also that the

groups formed had, in some sense, a similar average skill set

in the refactoring area.

External validity. The first threat is the limited number of

participants and evaluated systems, which externally threatens

the generalizability of our results. In addition, our study was

limited to the use of specific refactoring types and quality

attributes. Furthermore, we mainly evaluated our approach

using NSGA-II and GA algorithms, but other state-of-the-art

metaheuristic algorithms can be used. Future replications of

this study are necessary to confirm our findings.
VI. RELATED WORK

Search-based techniques [46]–[49] are widely studied to

automate software refactoring where the goal is to improve the

design quality of a system based mainly on a set of software

metrics. The majority of existing work combines several

metrics in a single fitness function to find the best sequence of

refactorings. Seng et al. [50] have proposed a single-objective

optimization approach using a genetic algorithm to suggest a

list of refactorings to improve software quality. The work of

O’Keeffe et al. [51] uses various local search-based techniques

such as hill climbing and simulated annealing to provide an

automated refactoring support. They use the QMOOD metrics

suite to evaluate the improvement in quality. The majority

of existing multi-objective refactoring techniques [18], [28],

[44], [52] propose as output a set of non-dominated refactoring

solutions (the Pareto front) that find a good trade-off between

the considered maintainability objectives. This leaves it to the

software developers to select the best solution from a set of

possible refactoring solutions, which can be a challenging task

as it is not natural for developers to express their preferences

in terms of a fitness functions value. Thus, the exploration of

the Pareto front is still performed manually.

Some recent studies [17], [26], [27] extended a previous

work [24] to propose an interactive search based approach for

refactoring recommendations. The developers have to specify

a desired design at the architecture level then the proposed

approach try to find the relevant refactorings that can generate

a similar design to the expected one. In our work, we do

not consider the use of a desired design, thus developers are

not required to manually modify the current architecture of

the system to get refactoring recommendations. Furthermore,

developers maybe interested to change the architecture mainly

when they want to introduce an extensive number of refac-

torings that radically change the architecture to support new

features.

VII. CONCLUSION

In this paper, we proposed a novel approach to extract de-

velopers’ knowledge and preferences to find good refactoring

recommendations. We combined the use of multi-objective

search, clustering, mono-objective search and users interaction

in our approach. To evaluate the effectiveness of our tool,

we conducted an evaluation with 32 software developers who

evaluated the tool and compared it with the state-of-the-art

refactoring techniques. As part of our future work, we are

planning to evaluate our approach on further projects and

a more extensive set of participants. We will also adapt

our approach to address other problems requiring developer

interactions such as bugs localization.

190

Authorized licensed use limited to: DePaul University. Downloaded on June 26,2025 at 07:51:12 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code, Jul.
1999.

[2] J. Kerievsky, Refactoring to Patterns. Pearson Higher Education, 2004.
[3] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,

and A. Shapochka, “A case study in locating the architectural roots of
technical debt,” in Proc. 37th, May 2015.

[4] J. Carriere, R. Kazman, and I. Ozkaya, “A cost-benefit framework
for making architectural decisions in a business context,” in 2010
ACM/IEEE 32nd International Conference on Software Engineering,
vol. 2. IEEE, 2010, pp. 149–157.

[5] “The developer Coefficient.” [Online]. Available:
https://stripe.com/reports/developer-coefficient-2018

[6] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-finder: a refactor-
ing reconstruction tool based on logic query templates,” in Proceedings
of the International Symposium on Foundations of Software Engineering,
ser. FSE, 2009, pp. 371–372.

[7] R. Marinescu, “Detection strategies: metrics-based rules for detecting
design flaws,” in 20th International Conference on Software Mainte-
nance (ICSM), Sept 2004, pp. 350–359.

[8] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” in Proceedings of the International Conference on Software
Engineering, 2009, pp. 287–297.

[9] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
detection of refactorings in evolving components,” in ECOOP, vol. 4067,
2006, pp. 404–428.

[10] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” IEEE Transactions on Software Engineering, vol. 30, no. 6,
pp. 355–371, 2004.

[11] J. Kim, D. Batory, D. Dig, and M. Azanza, “Improving refactoring
speed by 10x,” in Proceedings of the 38th International Conference
on Software Engineering. ACM, 2016, pp. 1145–1156.

[12] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni,
“A cooperative parallel search-based software engineering approach for
code-smells detection,” IEEE Transactions on Software Engineering,
vol. 40, no. 9, pp. 841–861, 2014.

[13] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Maintain-
ability defects detection and correction: a multi-objective approach,”
Automated Software Engineering, vol. 20, no. 1, pp. 47–79, 2012.

[14] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide,
“Recommendation system for software refactoring using innovization
and interactive dynamic optimization,” in Proceedings of the 29th
ACM/IEEE international conference on Automated software engineer-
ing. ACM, 2014, pp. 331–336.

[15] B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring-improving coupling
and cohesion of existing code,” in 11th Working Conference on Reverse
Engineering (WCRE), 2004, pp. 144–151.

[16] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-
criteria code refactoring using search-based software engineering: An
industrial case study,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 3, p. 23, 2016.

[17] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, “Interactive and
guided architectural refactoring with search-based recommendation,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 535–546.

[18] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb,
and A. Ouni, “Many-objective software remodularization using nsga-iii,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 24, no. 3, p. 17, 2015.

[19] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó. Cinnéide, and
K. Deb, “On the use of many quality attributes for software refactoring: a
many-objective search-based software engineering approach,” Empirical
Software Engineering, vol. 21, no. 6, pp. 2503–2545, 2016.

[20] M. Kessentini, T. J. Dea, and A. Ouni, “A context-based refactoring
recommendation approach using simulated annealing: two industrial case
studies,” in Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 2017, pp. 1303–1310.

[21] I. H. Moghadam and M. O. Cinneide, “Automated refactoring using de-
sign differencing,” in Software maintenance and reengineering (CSMR),
2012 16th European conference on. IEEE, 2012, pp. 43–52.

[22] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 5–18, 2012.

[23] D. Dig, J. Marrero, and M. D. Ernst, “Refactoring sequential java code
for concurrency via concurrent libraries,” in Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer
Society, 2009, pp. 397–407.

[24] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide,
“Recommendation system for software refactoring using innovization
and interactive dynamic optimization,” in Proceedings of the Interna-
tional Conference on Automated Software Engineering, 2014, pp. 331–
336.

[25] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, and F. Palomba,
“Supporting extract class refactoring in eclipse: the aries project,” in
34th International Conference on Software Engineering (ICSE). IEEE
Press, 2012, pp. 1419–1422.

[26] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni,
and Y. Cai, “An interactive and dynamic search-based approach to
software refactoring recommendations,” IEEE Transactions on Software
Engineering, 2018.

[27] V. Alizadeh and M. Kessentini, “Reducing interactive refactoring effort
via clustering-based multi-objective search,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, ser. ASE 2018. New York, NY, USA: ACM, 2018, pp. 464–474.
[Online]. Available: http://doi.acm.org/10.1145/3238147.3238217

[28] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and
I. Hemati Moghadam, “Experimental assessment of software metrics
using automated refactoring,” in International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2012, pp. 49–58.

[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[30] “Less is More: From Multi-Objective to Mono-Objective Refactoring.”
[Online]. Available: https://sites.google.com/view/scam2019

[31] M. Feathers, Working Effectively with Legacy Code. Prentice Hall PTR,
2004.

[32] M. Fowler and K. Beck, Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[33] “The Seventh International Workshop on Managing Technical Debt,”
http://www.sei.cmu.edu/community/td2015/.

[34] L. Tokuda and D. Batory, “Evolving object-oriented designs with
refactorings,” in Proceedings of International Conference on Automated
Software Engineering, 1999, pp. 174–181.

[35] E. R. Murphy-Hill and A. P. Black, “Why don’t people use refactoring
tools?” in Proceedings of the Workshop on Refactoring Tools in conjunc-
tion with the European Conference on Object-Oriented Programming,
2007, pp. 60–61.

[36] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and
quantifying architectural debt,” in Proceedings of the 38th International
Conference on Software Engineering. ACM, 2016, pp. 488–498.

[37] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the 30th international conference on
Software engineering. ACM, 2008, pp. 181–190.

[38] L. C. Briand, J. Wust, S. V. Ikonomovski, and H. Lounis, “Investigating
quality factors in object-oriented designs: an industrial case study,” in
Proceedings of the 1999 International Conference on Software Engi-
neering (IEEE Cat. No. 99CB37002). IEEE, 1999, pp. 345–354.

[39] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. disser-
tation, University of Illinois at Urbana-Champaign, 1992.

[40] J. Bansiya and C. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on Software Engineering,
vol. 28, no. 1, pp. 4–17, 2002.

[41] T. Caliński and J. Harabasz, “A dendrite method for cluster analysis,”
Communications in Statistics-theory and Methods, vol. 3, no. 1, pp. 1–
27, 1974.

[42] R. A. Redner and H. F. Walker, “Mixture densities, maximum likelihood
and the EM algorithm,” SIAM review, vol. 26, no. 2, pp. 195–239, 1984.

[43] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó
Cinnéide, “Recommendation system for software refactoring using
innovization and interactive dynamic optimization,” Proceedings of
the 29th ACM/IEEE international conference on Automated software
engineering - ASE ’14, pp. 331–336, 2014.

[44] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-
criteria code refactoring using search-based software engineering: An
industrial case study,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 3, p. 23, 2016.

191

Authorized licensed use limited to: DePaul University. Downloaded on June 26,2025 at 07:51:12 UTC from IEEE Xplore.  Restrictions apply. 



[45] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “JDeodor-
ant: identification and application of extract class refactorings,” in Pro-
ceedings of the 33rd International Conference on Software Engineering.
ACM, 2011, pp. 1037–1039.

[46] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[47] M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum, “Gen-
erating transformation rules from examples for behavioral models,”
in Proceedings of the Second International Workshop on Behaviour
Modelling: Foundation and Applications. ACM, 2010, p. 2.

[48] U. Mansoor, M. Kessentini, M. Wimmer, and K. Deb, “Multi-view refac-
toring of class and activity diagrams using a multi-objective evolutionary
algorithm,” Software Quality Journal, vol. 25, no. 2, pp. 473–501, 2017.

[49] ——, “Multi-view refactoring of class and activity diagrams using
a multi-objective evolutionary algorithm,” Software Quality Journal,
vol. 25, no. 2, pp. 473–501, 2017.

[50] O. Seng, J. Stammel, and D. Burkhart, “Search-based determination
of refactorings for improving the class structure of object-oriented
systems,” in 8th annual Conference on Genetic and Evolutionary Com-
putation (GECCO). ACM, 2006, pp. 1909–1916.

[51] M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring for software
maintenance,” Journal of Systems and Software, vol. 81, no. 4, pp. 502–
516, 2008.

[52] M. Harman and L. Tratt, “Pareto optimal search based refactoring at
the design level,” in 9th annual conference on Genetic and evolutionary
computation (GECCO), 2007, pp. 1106–1113.

192

Authorized licensed use limited to: DePaul University. Downloaded on June 26,2025 at 07:51:12 UTC from IEEE Xplore.  Restrictions apply. 


