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ABSTRACT
Metamodels evolve even more frequently than programming lan-

guages. This evolution process may result in a large number of

instance models that are no longer conforming to the revised meta-

model. On the one hand, the manual adaptation of models after

the metamodels’ evolution can be tedious, error-prone, and time-

consuming. On the other hand, the automated co-evolution of meta-

models/models is challenging, especially when new semantics is

introduced to the metamodels. While some interactive techniques

have been proposed, designers still need to explore a large num-

ber of possible revised models, which makes the interaction time-

consuming. In this paper, we propose an interactive multi-objective

approach that dynamically adapts and interactively suggests edit

operations to designers based on three objectives: minimizing the

deviation with the initial model, the number of non-conformities

with the revised metamodel and the number of changes. The pro-

posed approach proposes to the user few regions of interest by

clustering the set of recommended co-evolution solutions of the

multi-objective search. Thus, users can quickly select their pre-

ferred cluster and give feedback on a smaller number of solutions

by eliminating similar ones. This feedback is then used to guide the

search for the next iterations if the user is still not satisfied. We eval-

uated our approach on a set of metamodel/model co-evolution case

studies and compared it to existing fully automated and interactive

co-evolution techniques.
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1 INTRODUCTION
There is an urgent need to find better ways to evolve software

systems and, consequently, improve developers’ productivity. Like

source code, the design is subject to evolution due to changing

requirements and technological constraints. The evolution of meta-

models, models, and transformation rules is inevitable in model-

driven engineering (MDE) [5]. The changes can be related to the

design of software systems, from initial development to mainte-

nance. When metamodels evolve, the instantiated models need to

be updated to make them conformwith the newmetamodel version.

Thus, a set of change operations must be applied to the initial model

versions to fix the inconsistencies with the new metamodel version.

This process is called metamodel/model co-evolution [21, 40].

Several co-evolution studies are proposed; most of them are

providing either a manual or semi-automated support based on pre-

defined templates of evolution scenarios [7, 9, 12, 30, 31]. In addition

to being pre-defined, these templates are specific to the artifact to

co-evolve with the metamodel. Few fully automated co-evolution

studies try to find an entire edit operations sequence that revises

models in accordance with the new metamodel version [23, 24, 40].

Several techniques proposed to translate metamodel changes into

model level edit operations using a set of generic transformation

rules [16, 18, 20, 44]. However, several transformations require

interactions with the user especially when new elements are added

to the new meta-model.

Recently, an approach has been proposed to interactively evalu-

ate the co-evolved models using search-based software engineer-

ing [25]. The designers can provide feedback about the co-evolved

models and may introduce manual changes to some of the edit

operations that revise the model. However, this interactive process

can be expensive, and tedious since designers must evaluate every

recommended set of edit operations and adapt them to the targeted

design, especially in large models where the number of possible

co-evolution strategies can grow exponentially.

In this paper, we propose an interactive approach that combines

multi-objective search (NSGA-II [10]), interactive optimization, and

unsupervised learning to reduce the designer’s interaction effort

when co-evolving models. We generate, first, using multi-objective

search, different possible sets of edit operations by finding the edit

operation sequences that minimize the number of conformance

errors, the deviation with the initial model (reduce the loss of in-

formation) and the number of proposed edit operations.

https://doi.org/10.1145/3365438.3410966
https://doi.org/10.1145/3365438.3410966
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After a number of iterations, a near-optimal set of solutions

(Pareto front) are generated to the user representing potential sets

of edit operations that co-evolve a model to the evolved metamodels.

However, the Pareto front of possible solutions can be large. There-

fore, it is essential to provide designers with additional support

for managing and understanding this set. Thus, an unsupervised

learning algorithm clusters the solutions into different categories,

to guide the designers in selecting their region of interests and

reduce the effort to explore the Pareto-front. The feedback from

the designers, both at the cluster and solution levels, are used to

automatically generate constraints to reduce the search space in the

next iterations and focus on the region of designer’s preferences/in-

terest. For instance, the designer can select the most relevant cluster

of solutions, called region of interests, based on his preferences

then the multi-objective search will reduce the space of possible

solutions, in the next iterations, by generating constraints from the

interaction data such as eliminating part of the model elements that

are not relevant for the co-evolution.

We selected 16 participants to manually evaluate the effective-

ness of our tool on a set of three Ecore metamodels from the Graph-

ical Modeling Framework (GMF) and a well-known evolution case

of the UML metamodel for Class Diagrams extracted from [8, 45].

Furthermore, we compared our approach to existing fully auto-

mated co-evolution techniques [23, 24, 45] and to an interactive

technique [25]. The manual evaluation of the revised models to

meet new metamodel changes confirms the effectiveness of our

clustering-based interactive approach.

2 BACKGROUND AND MOTIVATING
EXAMPLE

In MDE, metamodels are the means to specify the abstract syntax

of modeling languages [5]. Metamodels are instantiated to pro-

duce models which are, in essence, object graphs, i.e., consisting of

objects (instances of classes) representing the modeling elements,

object slots for storing values (instances of attributes), and links

between objects (instances of references). The object graphs are

often represented as UML object diagrams and have to conform

to the UML class diagram describing the metamodel. This means,

for a model to conform to its metamodel, a set of constraints have

to be fulfilled. This set of constraints is normally referred to as

conformsTo relationship [21, 40].

Figure 1 shows an example of a simplified metamodel evolution,

based on simple staff modeling language taken from [39] and a

model conform to the initial metamodel version. The metamodel

evolution comprises three steps: extract sub-classes for Person class

resulting in ProjectStaff, InternalStaff, and ExternalContact, make

class Person abstract, refine the types of the assignedTo and contact
references, as well as restrict the existence of the salary attribute

only for Staff instances. This evolution results in the fact that, be-

sides other constraints violations, the constraint shown in Listing 1

is violated when considering the initial model shown in Figure 1c

and its conformance to the new metamodel version in Figure 1b.

Listing 1: Type/Object Relationship formalized as OCL Con-
straint
context M!Object

inv typeExists: MM!Class.allInstances () ->

Figure 1: Example of metamodel evolution.

exists(c|c.name = self.type and not c.isAbstract)

To re-establish conformance for the given example, let us assume

that only two edit operation types onmodels are used. Non-conforming

objects may either be retyped (reclassified as instances of the con-

crete classes) or deleted. Thus, the potential solution space for

retyping or deleting non-conforming elements contains (𝑐 + 1)𝑜
solutions (with 𝑐 = number of candidate classes + 1 for deletion, 𝑜

= number of non-conforming objects). This means, in our given

example, we would end up with 64 possible co-evolutions

Several co-evolution studies proposed to revise models after

metamodels evolution frommanual to fully automated approaches [14].

Recently, few automated/interactive tools [23–25] used search-

based software engineering to generate revised models. The pro-

posed tools refines an initial model instantiated from the previous

metamodel version to make it as conformant as possible to the new

meta-model version by finding the best compromise between three

objectives, namely minimizing(i) the non-conformities with new

metamodel version,(ii) the changes to existing models, and (iii) the

dissimilarities between the initial and revised models. The output

is several equally good solutions (edit operations that revise the

model) presented to designers to select the appropriate one based

on his/her preferences. In fact, designers may prefer solutions that

introduce the minimum number of changes to the initial model

while maximizing the conformance with the target metamodel.

However, these tools suffer from several limitations.

First, they lack flexibility since designer has to inspect a large list

of potential good recommended solutions, which is time consuming,

and designer may miss to select the most preferred once. Second,

designers always have a concern on expressing their preferences

upfront as an input for a tool to guide the search for co-evolvedmod-

els suggestions. They prefer to get insights from some generated

co-evolution solutions then decide which ones want to improve.

Third, the users may spend considerable time to understand the
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Figure 2: Example model co-evolution.

Figure 3: Pareto front of co-evolution solutions generated by
just using the multi-objective search.

differences between the solutions and their impacts on the different

co-evolution objectives.

Figure 3 shows an example of a large number of equally good

solutions in terms of objectives (represented in points) where the

designer has to decidewhich solution to select, andwhich additional

changes to apply to the proposed solutions generated based only on

the multi-objective search (similar to existing approaches). Figure 2

shows modified models after applying the set of edit operations of

solutions that are represented in a shape of stars in Figure 3. This

figure shows that there may be several possible solutions where

the user has to decide which one to select in the search space based

on the preferences. Thus, there is to reduce the search space in the

next iterations and reduce the interactions effort using the feedback

from the user.

3 CLUSTERING-BASED INTERACTIVE
MULTI-OBJECTIVE MODEL
CO-EVOLUTION

The general structure of our approach is sketched in Fig. 4. Our

approach includes three main components. The first component is

the multi-objective algorithm, NSGA-II, executed for a number of

iterations to generate a diverse set of non-dominated co-evolution

solutions called Pareto-optimal solutions [10], defined as a set of

edit operations applied to the initial model, balancing the three

objectives of minimizing the number of suggested edit operations,

the deviationwith the initial model, and the number of conformance

errors with the revised metamodel.

The output of the first component can be a large number of

possible solutions. Thus, it is essential to provide designers with

additional support for understanding and managing this set of

solutions. The goal of the second phase is to cluster the solutions

based on their objective functions and the similarity among them.

Then, a representative solution is identified from each cluster to

present it to the user.

The last phase is to manage the interaction with the user where

s/he can visualize the clusters of solutions and the representative

solution of each cluster. The user can interact with the tool at the

solution level, by accepting or rejecting or modifying suggested edit

operations, or the cluster level, by specifying a cluster as a region

of interest. Thus, the goal is to guide, implicitly, the exploration of

the Pareto front to find good co-evolution recommendations. We

extract the user preferences from these activities to consider them

in the next round of iterations to converge towards to user’s region

of interest. This loop will continue until the user is satisfied and a

set of edit operation is chosen to apply to the model to revise.

In the following, we describe the different main components of

our approach.

3.1 Phase 1: Multi-objective formulation
The process starts with exploring the search space to find non-

dominated solutions. To explore this search space, we propose an

adaptation of the the non-dominated sorting genetic algorithm

(NSGA-II) to interactively find a trade-off between three objectives

that will be described later. A multi-objective optimization problem

can be formulated in the following form:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 (𝑥) = (𝑓1 (𝑥), 𝑓2 (𝑥), ..., 𝑓𝑀 (𝑥)),
𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑆,

𝑆 = {𝑥 ∈ 𝑅𝑚 : ℎ(𝑥) = 0, 𝑔(𝑥) ≥ 0};

where 𝑆 is the set of inequality and equality constraints and the

functions 𝑓𝑖 are objective or fitness functions. In multi-objective

optimization, the quality of a solution is recognized by dominance.

The set of feasible solutions that are not dominated by any other

solution is called Pareto-optimal or Non-dominated solution set.

The first iteration of the process begins with a complete execu-

tion of adapted NSGA-II to ourmodel co-evolution recommendation

problem based on the fitness functions that will be discussed later.

At the beginning, a random population of encoded edit operation

solutions, 𝑃0, is generated as the initial parent population. Then,
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Figure 4: High-level overview of the proposed interactive clustering co-evolution approach.

the children population, 𝑄0, is created from the initial population

using crossover and mutation. Parent and children populations

are combined together to form 𝑅0. Finally, a subset of solutions

is selected from 𝑅0 based on the crowding distance and domina-

tion rules. This selection is based on elitism which means keeping

the best solutions from the parent and child population. Elitism

does not allow an already discovered non-dominated solution to

be removed. This process is continued until the stopping criteria is

satisfied.

The results of the first execution of search algorithm are a set of

non-dominated solutions that will be clustered and then updated by

the users. After this interactions phase, the multi-objective search

algorithm will continue to run using the new constraints generated

at the cluster and solution levels.

3.1.1 Solution Representation. A co-evolution solution consists of a

sequence of n edit operations to revise the initial model. The vector-

based representation is used to define the edit operations sequence.

Each vector’s dimension has an operation and its index in the

vector indicates the order in which it will be applied. Consequently,

vectors representing different solutions may have different sizes,

i.e., number of edit operations.

Table 1 shows the possible edit operations that can be applied

to model elements. The instances of classes are called objects, in-

stances of features are called slots, and instances of references are

called links. These operations are inspired by the catalog of op-

erators for metamodel/model co-evolution presented in [19]. The

catalog includes both metamodel and model changes. Thus, we

selected from it all the edit operations that can be applied to the

model level since we are not changing the metamodels in this paper.

Figure 5 represents a solution that can be applied to the initial

model of our motivating example described in Section 2.

Fitness functions. The investigated co-evolution problem involves

searching for the best sequence of edit operations to apply among

the set of possible ones. A good solution 𝑠 is a sequence of edit oper-

ations to apply to an initial model with the objectives of minimizing

the number of non-conformities 𝑓1 (𝑠) = 𝑛𝑣𝑐 (𝑠) with the new meta-

model version, the number of changes 𝑓2 (𝑠) = 𝑛𝑏𝑂𝑝 (𝑠) applied to

the initial model, and the inconsistency 𝑓3 (𝑠) = 𝑑𝑖𝑠 (𝑠) between the

initial and the evolved models such as the loss of information.

Figure 5: Solution representation.

.

Operations Element Description

Create/delete Object, link, slot Add/remove an element in

the initial model.

Retype Object Replace an element by an-

other equivalent element

having a different type.

Merge Object, link, slot Merge several model ele-

ments of the same type into

a single element.

Split Object, link, slot Split a model element into

several elements of the

same type.

Move Link, slot Move an element from an

object to another.

Table 1: Model edit operations.

The first fitness function 𝑛𝑣𝑐 (𝑠) counts the number of violated

constraints w.r.t. the evolved metamodel after applying a sequence

𝑠 of edit operations. We apply, first, the sequence of edit operations

(solution) on the initial model then we load the evolved model on

the target metamodel to measure the number of conformance errors

based on the number of violated constraints. We consider three

types of constraints, as described in [36]: related to model objects,

i.e., model element (denoted by O.*), related to objects’ values (V.*),

and related to objects’ links (L.*). We use in our experiments the
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implementation of these constraints inspired by Schoenboeck et

al. [40] and Richters et al. [36] with slight adaptations. The con-

straints are hard-coded in the implementation of the algorithm

and most of them are from the EMF conformance verification con-

straints that already exists in EMF. The full list constraints can be

found in this link [1]

The sequence of edit operations to fix the non-conformities

are dependent to each others thus it is not possible to treat the

different issues in isolation. In fact, the edit operations used to fix

one violation may impact other violations and create new ones.

Thus, we have to treat all the violations together when generating

the set of edit operations as a possible solution.

For the second fitness function, which aims at minimizing the

changes to the initial models, we simply count the number of edit

operations 𝑛𝑏𝑂𝑝 (𝑠) of a solution 𝑠 (size of 𝑠). The third fitness func-
tion dis(s) measures the difference between the model elements

in the initial and revised model. As the type of a model element

may change because of a change in the metamodel, we cannot rely

on elements’ types. Alternatively, we use the identifiers to assess

whether information was added or deleted when editing a model. In

this case, the renamed or extracted model elements will be consid-

ered different than the initial model element. Thus, we considered

the assumption that two model elements could be syntactically

similar if they use a similar vocabulary. Thus, we calculated for the

textual similarity based on the Cosine similarity [32]. In the first

step, we tokenize the names of initial and revised model elements.

The textual and/or context similarity between elements grouped

together to create a new class is an important factor to evaluate the

cohesion of the revised model. The initial and revised models are

represented as vectors of terms in n-dimensional space where n is

the number of terms in all considered models. For each model, a

weight is assigned to each dimension (representing a specific term)

of the representative vector that corresponds to the term frequency

score (TF) in the model. The similarity among initial and revised

model elements is measured by the cosine of the angle between its

representative vectors as a normalized projection of one vector over

the other. The cosine measure between a pair of model elements, 𝐴

and 𝐵, is defined as follows:

𝑆𝑖𝑚(𝐴, 𝐵) = 𝑐𝑜𝑠 (𝜃 ) = 𝐴 ∗ 𝐵
®𝐴 ∗ ®𝐵

Let 𝐼𝑑𝑖 and 𝐼𝑑𝑟 be the sets of identifiers present respectively in the

initial (𝑀𝑖 ) and revised (𝑀𝑟 ) models. The inconsistency between the

models is measured as the complement of the similarity measure

𝑠𝑖𝑚(𝑠)which is the proportion of similar elements in the twomodels

based on the cosine similarity. Formally the third fitness function

is defined as:

𝐷𝑖𝑠 (𝑠) = 1 − (𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑖𝑑𝑖 , 𝑖𝑑𝑟 )/𝑀𝑎𝑥 ( |𝑀𝑖 |, |𝑀𝑟 |))

where 𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑖𝑑𝑖 , 𝑖𝑑𝑟 ) is defined as follows:

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑖𝑑𝑖 , 𝑖𝑑𝑟 ) =
∑ |𝑀𝑖 |
𝑗=1

𝑀𝑎𝑥𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐼𝑑 𝑗 , (𝑖𝑑𝑟 ) |𝑀𝑟 |
𝑘=1
)

This function will compare between each of the initial model

elements and all the elements of the revised model to find the best

matching.

Algorithm 1: Pareto-front Clustering
Input :Pareto-front solutions (S)
Output :Labeled solutions (LS),

Clusters Representative Solution (CR)

1 begin Calculate best number of clusters-K

2 for 𝑖 ← 2 to 10 do
3 LS = GMMClustering (i, S);

4 𝑆𝑐𝑜𝑟𝑒𝑖=CalinskiHarabaszIndex(LS);

5 K←MaxScoreIdx();

6 begin GMMClustering (K,S)
7 𝜇𝑘 , Σ𝑘 , 𝜋𝑘 ← Initialize-K-Gaussian();

/* Expectation-Maximization */

8 while ¬ converge do
9 𝛾 (𝑠𝑛𝑘 ) ← Expectation();

10 𝜇𝑘 , Σ𝑘 , 𝜋𝑘 ←Maximization();

11 EvaluateLikelihood();

12 foreach 𝑠𝑛 ∈ 𝑆 do
/* assigning cluster labels */

13 𝐿𝑛 ←MaxResponsibilityIdx(𝑠𝑛);

/* Find Clusters Representative */

14 foreach Cluster 𝐶𝑘 do
15 𝐶𝑅𝑘 ←MaxDensity(𝑠𝑛𝑘 ∈ 𝐶𝑘 )

16 Return LS, CR;

3.2 Phase 2: Clustering the Pareto Front of
Co-Evolution Solutions

The goal of this phase is to reduce the effort to investigate the

solutions in Pareto-optimal front. This phase tries to group the

solutions based on their fitness function values without filtering or

removing any of them. In this way, the solutions can be categorized

based on the similarity among them in the objectives space. Then,

a representative solution is identified from each partition to recom-

mend to the decision maker (center of the cluster). For this purpose

we used clustering analysis technique. Clustering is one of the most

important and popular unsupervised learning problems in Machine

Learning. It helps to find a structure in a set of unlabelled data in a

way that the data in each cluster are similar together while they

are dissimilar to the data in other clusters.

One of the challenges in cluster analysis is to define the opti-

mal number of clusters. Therefore, we need cluster validity index

as a measure of clustering performance. Different partitions are

computed and the ones that fit the data better are selected. The

procedure of Phase 2 is illustrated in Algorithm 1.

3.2.1 Calinski Harabasz (CH) Index. is an internal clustering valida-
tion measure based on two criteria: compactness and separation [6].

CH evaluates the clustering results based on the average sum of

squares between and within clusters and it defines as follows:

𝐶𝐻 =
(𝑁 − 𝐾)
(𝐾 − 1)

Σ𝐾
𝑘=1
|𝑐𝑘 | 𝑑𝑖𝑠𝑡 (𝑐𝑘 , 𝑆)

Σ𝐾
𝑘=1

Σ𝑠𝑖 ∈𝑐𝑘 𝑑𝑖𝑠𝑡 (𝑠𝑖 , 𝑐𝑘 )
(1)



MODELS ’20, October 18–23, 2020, Virtual Event, Canada Wael Kessentini, et al.

Figure 6: Interactive solution charts in our tool.

where 𝑁 is the size of data,𝐾 is the number of clusters, 𝑑𝑖𝑠𝑡 (𝑎, 𝑏)
is the Euclidean distance, 𝑐𝑘 and 𝑆 are the cluster and global cen-

troids, respectively. The first step in Pareto-front clustering is to

execute the clustering process with different number of components

and to compute CH score for each. The best number of clusters (K)

is defined as the one that achieves the highest CH score.

3.2.2 Gaussian Mixture Model (GMM). is a probabilistic model-

based clustering algorithm with which a mixture of 𝑘 Gaussian

distributions is fitted on the data. GMM is soft-clustering approach

in which each data point is assigned a degree that it belongs to

each of the clusters. The parameters that need to fit are Mean (𝜇𝑘 ),

Co-variance (Σ𝑘 ), and Mixing coefficient (𝜋𝑘 ).

GMM clustering begins by random initiation of parameters for K

components. Then, Expectation-Maximization (EM) algorithm [35]

is employed for parameter estimation. EM is an iterative process to

train the parameters and has two steps. In the expectation step, an

assignment score to each Gaussian distribution, called "responsibil-

ity" or "membership weight", is determined for each solution point

as follow:

𝛾 (𝑧𝑛𝑘 ) =
𝜋𝑘N(𝑠𝑛 |𝜇𝑘 , Σ𝑘 )∑𝐾
𝑖=1 𝜋𝑖N(𝑠𝑛 |𝜇𝑖 , Σ𝑖 )

(2)

The responsibility coefficient will be used later for preference

extraction step. In the maximization step, the parameters of each

Gaussian are updated using the computed responsibility coeffi-

cients.

Figure 6 shows the result of the clustered solutions presented

in our motivating example via interactive colored graphical charts.

This figure shows that the clustering feature identified four main

different clusters.

Algorithm 2: Interaction and User Preferences

Input :Labeled solutions (LS)

Output :Preferred Cluster (PC),

Preference Parameters=[

MWP(Model elements Weighted Probability,

OWP(Edit Operation Weighted Probability),

RS(Reference Solution)]

begin User Interaction and Feedback

while ¬ interaction is done do
𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑖 ← UserEvaluation(𝐸𝑜𝑖 );

𝑉𝑖 ← Score(𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑖 );

/* Solutions and clusters score */

𝑆𝑐𝑜𝑟𝑒𝑠𝑖 ← Average(𝑉𝑖 ∈ 𝑠𝑖 );
𝑆𝑐𝑜𝑟𝑒𝑐𝑘 ← Average(𝑆𝑐𝑜𝑟𝑒𝑠𝑖 ∈ 𝑐𝑘 );
PC← cluster with Max score;

begin User Preference Extraction

/* Representative solution as reference */

RS← 𝐶𝑅𝑃𝐶 ;

foreach [𝑒𝑜𝑖 , 𝑒𝑙𝑡𝑖 ] ∈ 𝑃𝐶 do
𝑂𝑊𝑃𝑝 ← AverageWeightedFreq(𝑒𝑜𝑝 );

𝑀𝑊𝑃𝑞 ← AverageWeightedFreq(𝑒𝑙𝑡𝑞 );

Return PC, Preference Parameters[];

3.3 Phase 3: Developers Interaction and
Preferences Extraction

In this phase, the user has the ability to explore the recommended

solutions and clusters efficiently and discover the shared underly-

ing characteristics of the solutions in a cluster at a glance. He may

investigate the center solution of each cluster, or search further

and examine the solutions inside a cluster of interest. Every edit

operation can be evaluated by the user. As described in Algorithm

2, we translate each evaluation feedback to a continuous score in

the range of [-1,1].

The user can interact with the tool at the solution level by ac-

cepting / rejecting / modifying specific edit operation or the cluster

level by specifying a specific cluster as the region of interest. After

the interaction is done and the user decides to continue to the next

round, the score of each solution and cluster are computed. Solution

score (𝑆𝑐𝑜𝑟𝑒𝑠𝑖 ) is defined as the average of all edit operations score

exists in the solution vector. Similarly, Cluster score (𝑆𝑐𝑜𝑟𝑒𝑐𝑘 ) is

calculated as the average of all solutions score assigned to the clus-

ter. Then, the cluster achieved the highest score among all clusters

is considered as the user preferred partition in Pareto-front space

from which the preference parameters will be extracted.

The next step of phase 3 of our proposed approach is to extract

user preference parameters from the interaction step. We consider

the representative solution of the preferred cluster as the reference

point. Then, we compute the weighted probability of edit operations

(𝑂𝑊𝑃 ) and target model elements (𝑀𝑊𝑃 ). Assuming the selected

cluster’s index is 𝑗 , these parameters can be computed as follow:
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𝑂𝑊𝑃𝑝 =

∑
𝑠𝑖 ∈𝑐 𝑗 𝛾𝑖 𝑗 × (|𝑜𝑝 ∈ 𝑠𝑖 |)∑

𝑜𝑚 ∈𝐸𝑜
∑
𝑠𝑖 ∈𝑐 𝑗 𝛾𝑖 𝑗 × (|𝑜𝑚 ∈ 𝑠𝑖 |)

(3)

𝑀𝑊𝑃𝑞 =

∑
𝑠𝑖 ∈𝑐 𝑗 𝛾𝑖 𝑗 × (|𝑒𝑙𝑡𝑞 ∈ 𝑠𝑖 |)∑

𝑒𝑙𝑡𝑚 ∈𝐸𝑙𝑡𝑠
∑
𝑠𝑖 ∈𝑐 𝑗 𝛾𝑖 𝑗 × (|𝑒𝑙𝑡 ∈ 𝑠𝑖 |)

(4)

where 𝑠𝑖 is the solution vector, 𝛾𝑖 𝑗 is the membership coefficient

of solution i to the cluster j, 𝑜 is the edit operation action, 𝐸𝑜 is

the set of all edit operations, and 𝐸𝑙𝑡𝑠 is the set of all model elements.

3.4 Applying Preference Parameters
If the user decides to continue the search process, then the prefer-

ence parameters will be applied during the execution of different

components of multi-objective optimization as described in the

following:

• Preference-based initial population: The solutions from pre-

ferred clusters will make up the initial population of next

iteration as a means of customized search starting point. In

this way, we initiate the search from the region of interest

rather than randomly. New solutions need to be generated

to fill and achieve the pre-defined population size. Instead

of random creation of the edit operations based on a unify

probability distribution, we utilize𝑂𝑊𝑃 and𝑀𝑊𝑃 as a prob-

ability distribution.

• Preference-based mutation: For this operator, similarly, if a

solution is selected to mutate, we give a higher chance to

edit operations of interest to replace the chosen one based

on the probability distribution 𝑂𝑊𝑃 .

• Preference-based selection: the selection operator tends to

filter the population and assign higher chance to the more

valuable ones based on their fitness values. In order to con-

sider the user preferences in this process, we adjusted this

operator to include closeness to the reference solution as an

added measure of being a valuable individual of the popula-

tion. That means the chance of selection is related to both

fitness values and distance to the region of interest as:

𝐶ℎ𝑎𝑛𝑐𝑒 (𝑠𝑖 ) ∝
1

𝑑𝑖𝑠𝑡 (𝑠𝑖 ,𝐶𝑅 𝑗 )
, 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑠𝑖 ) (5)

where 𝑑𝑖𝑠𝑡 () indicates Euclidean distance and 𝐶𝑅 𝑗 is the

representative solution of cluster 𝑗 .

The above-mentioned customized operators aid to keep the sto-

chastic nature of the optimization process and at the same time

take the user preferred edit operations into account.

4 EVALUATION
4.1 Research Questions
We defined two main research questions to measure the correct-

ness, relevance and benefits of our interactive clustering-based

multi-objective model co-evolution tool(IC-NSGA-II) comparing

to : (1) an approach based on interactive multi-objective search

(I-NSGA-II) [25] but the interactions were limited to accept/reject

edit operations and there is no clustering of the Pareto front or

learning mechanisms from the interaction data, (2) an automated

multi-objective co-evolution approach (without the interaction com-

ponent) [24] and (3) an existing automated co-evolution approach

based on pre-defined rules without using search methods [45].

The research questions are as follows:

• RQ1: Co-evolution relevance. To what extent can our ap-

proach make meaningful recommendations compared to

existing metamodel/model co-evolution techniques?

• RQ2: Interactive clustering relevance. To what extent

can our clustering-based approach efficiently reduce the

interaction effort?

4.2 Experimental Setting
4.2.1 Studied Metamodels and Models. To answer the research

questions, we considered the evolution of GMF covering a period

of two years and the UML Class Diagram metamodel evolution

from [8, 45]. These case studies are interesting scenarios since

they represent real metamodel evolutions, used in an empirical

study [17] and studied in other contributions [11, 15, 37]. For GMF,

we chose to analyze the extensive evolution of three Ecore meta-

models. We considered the evolution from GMF’s release 1.0 over

2.0 to release 2.1 covering a period of two years. For achieving a

broad data basis, we analyzed the revisions of three metamodels,

namely the Graphical Definition Metamodel (GMF Graph for short),

the Generator Metamodel (GMF Gen for short), and the Mappings

Metamodel (GMF Map for short). Therefore, the respective meta-

model versions had to be extracted from GMF’s version control

system and, subsequently, manually analyzed. From the different

metamodel releases of GMF and UML, we created different sce-

narios based on the number of changes that were introduced at

the metamodels level. We merged the releases that did not include

extensive changes and we generated two evolution scenarios per

metamodel type.

The different models and metamodels can be classified as small-

sized through medium-sized to large-sized. In our experiments,

we have a total of 7 different co-evolution scenarios where each

scenario included eight different models to evolve for the GMF case-

studies. The percentage of changes between the different releases

is estimated based on the number of modified metamodel elements

divided by the size of the metamodel. The created models for our

experiments are ensuring the metamodels coverage. Furthermore,

we used an existing set of 10 generated models for the case of UML

metamodel class diagram evolution from the deterministic work

of [8, 45] thus we were not involved in the selection of models

and metamodel changes. In order to ensure a fair comparison with

Wimmer et al. [45], we only compared both approaches on the

existing UML dataset. Table 2 describes the statistics related to the

collected data.

4.2.2 Evaluation Metrics. To evaluate the relevance of our tool we

used the manual correctness (MC) measured by the designers. It

consists of the number of relevant edit operations identified by the

designer over the total number of edit operations in the selected

solutions. In addition, we report the number of interactions (NI)

required on the Pareto front for the interactive model co-evolution

approaches. This evaluation will help to understand if we efficiently

reduced the interaction effort. We decided to limit the comparison

to only the interactive multi-objective work of Kessentini et al. [25]
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Metamodels Models

Release #of elements #of changes %of changes #of models #of model

elements

(Min,Max)

#of expected

edit operations

(Min, Max)

GMF Gen 1.41 to 1.90 From 885 to 1120 347 31% 8 389, 744 39, 70

GMF Gen 1.90 to 1.248 From 1120 to 1216 362 27% 8 433, 686 66, 83

GMF Map 1.45 to 1.52 From 382 to 413 62 15% 8 203, 394 46, 69

GMF Map 1.52 to 1.58 From 413 to 428 10 1.8% 8 347, 402 57, 81

GMF Graph 1.25 to 1.29 From 278 to 279 14 5% 8 142, 283 34, 55

GMF Graph 1.25 to 1.33 From 279 to 281 42 14% 8 149, 301 29, 43

UML CD [45] From 23 to 29 8 8% 10 28, 49 11, 23

Table 2: Statistics related to the collected data of the investigated cases.

since it is the only approach offering interaction with the user, and

it will help us understand the real impact of clustering the Pareto

on the recommendation and interaction effort. Furthermore, we

report the computation time (T) for the different evolution scenar-

ios to estimate the effort required to obtain the best co-evolution

solutions.

All these metrics are used for the research questions including

the comparison between our interactive clustering-based approach,

an existing interactive multi-objective approach [25] (without the

clustering feature) and the two automated techniques of Kessentini

et al. [23] and Wimmer et al. [45].

4.3 Study Participants and Parameters Setting
Our study involved 16 master students in Software Engineering.

All the participants are volunteers and familiar with model-driven

engineering and co-evolution/refactoring since they are part of a

graduate course on Software Testing & Quality Assurance and most

of them participated in similar experiments in the past, either as part

of a research project or during graduate courses. Furthermore, 12

out the 16 students are working as full-time or part-time developers

in software industry.

Participants were first asked to fill out a pre-study question-

naire containing five questions. The questionnaire helped to collect

background information such as their role within the company,

their modeling experience, and their familiarity with model-driven

engineering and co-evolution/refactoring. In addition, all the par-

ticipants attended two lectures about model transformations and

evolution, and passed six tests to evaluate their performance in eval-

uate and suggest model evolution solutions. We formed 4 groups,

each composed by 4 participants. The groups were formed based on

the pre-study questionnaire and the test results to ensure that all

the groups have almost the same average skill level. We divided the

participants into groups according to the studied metamodels, the

techniques to be tested and developers’ experience. The participants

were asked to manually co-evolve the different models and evaluate

the results of the different approaches based on a counter-balanced

design [34].

The parameters’ values of the different search algorithms were

fixed by trial and error and are as follows: crossover probability =

0.3; mutation probability = 0.5 where the probability of gene modi-

fication is 0.3; stopping criterion = 100,000 evaluations. Trial and

error is a fundamental method of problem solving. It is characterized

by repeated and varied attempts of algorithm configurations [22].

4.4 Results
Results for RQ1: Co-evolution relevance.We report the results

of the empirical qualitative evaluation (MC) in Figure 7. The ma-

jority of the co-evolution solutions recommended by our approach

were correct and validated by the participants on the different case

studies. On average, for all of our four studied metamodels/models,

our approach was able to correctly recommend 92% of generated

edit operations. The remaining approaches have an average of

89% and 87% respectively for the interactive multi-objective ap-

proach [25] and the fully automated multi-objective approach [24].

Both of the interactive tools outperformed fully-automated ones

which shows the importance of integrating the human in the loop

when co-evolving models. Furthermore, it is clear that adding the

clustering feature to enable the designers to select a region of in-

terests based on which objectives they want to prioritize and what

solutions they partially liked.

The deterministic approach defines generic rules for a set of pos-

sible metamodel changes that are applied to the co-evolved models.

Figure 7 shows that our interactive approach clearly outperform,

in average, the deterministic technique. The comparison is limited

to the only case of UML Class Diagram evolution since for this

case Wimmer et al. [45] provide a set of co-evolution rules. Further

adaptations are required to make this set of rules working on other

metamodels.

A qualitative analysis of the results show that several interactions

with the designers helped to reduce the search space by avoiding

the edit operations that were rejected by them. We found that the

best final co-evolution solutions identified by the designers after

several interactions with our tool cannot be recommended by the

remaining approaches. In fact, all these solutions are obtained either

after 1) eliminating/modifying edit operations applied to models

not relevant to the designers’ context or 2) emphasizing specific

cluster that prioritizes some objectives and penalizes others.

All the results based on the MC metric on the different case

studies were statistically significant with 95% of confidence level

using the Kruskal-Wallis test. Regarding the effect size, we found

that our approach is better than the others with an A effect size
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Figure 7: The median manual evaluation scores, MC, on the
four metamodel evolution scenarios with 95% confidence
level (𝛼 = 5%)

Table 3: Median time, in minutes, and number of interac-
tion proposed by both interactive approaches on the differ-
ent metamodel/model co-evolution scenarios

Approaches

Metamodels IC-NSGA-II (T,NI) I-NSGA-II. (T,NI)

GMF Gen 52 20 71 32

GMF Map 34 16 55 25

GMF Graph 40 24 83 35

Class Diagram 20 8 39 5

higher than 0.82 for GMF GEN, GMF MAP, GMF Graph; and an A

effect size higher than 0.88 for Class Diagram.

Results for RQ2: Interactive clustering relevance. Table 3
summarizes the time, in minutes, and the number of interaction

with the participants to find the most relevant solutions using

our tool (IC-NSGA-II), and the interactive approach (I-NSGA-II) of

Kessentini et al. [25]. All the participants spent less time to find the

most relevant model edit operations on the different metamodels

comparing to I-NSGA-II. For instance, the average time is reduced

from 71 minutes to just 52 minutes for the case of GMF Gen. The

time includes the execution of IC-NSGA-II and the different phases

of interaction until the designer is satisfied with a specific solution.

It is clear as well that the time reduction is not correlated with

the number of interaction. For instance, the deviation between

IC-NSGA-II and I-NSGA-II for GMF Graph in terms of number of

interaction is limited to 9 (24 vs 35) but the time reduction is 43

minutes. However, it is clear that our approach reduced as well the

number of interaction comparing to I-NSGA-II. while increasing

the manual correctness as described in RQ1.

Figure 8 shows a qualitative example extracted from our experi-

ments using our tool with a population size of 100 based on three

phases of interactions. After the generation of the Pareto front, the

clustering feature identified four main different clusters . After the

clustering phase, the user selected the solution that belongs to the

purple cluster as the preferred one after exploring several solutions.

Thus, the next iterations of IC-NSGA-II prioritized that "region of

interest", so more solutions were generated based on his preference.

Figure 8 shows the new reduced space of solutions with three new

clusters generated around the previously selected cluster and more

solutions are generated towards the preferred cluster.

14 out the 16 participants mention, during the post-study ques-

tionnaire, that our interactive clustering-based tool is faster and

much easier to use than the one without the clustering compo-

nent [25] to identify quickly relevant edit operations based on their

interests. Similar observation is valid when comparing our tool to

the fully-automated multi-objective tool [24]. 12 out of the 16 par-

ticipants highlighted the difficulty to select one relevant solution

from a large set of non-dominated solutions and without offering

any flexibility to update them.

All the users mentioned the high usability of the tool and the dif-

ferent options that are offered comparing to deterministic tool [45].

They did not appreciate the pre-defined transformations based on

metamodel change types since the latter are difficult to generalize

for all potential changes of metamodels. The definition of these

rules may require a high level of expertise/knowledge regarding

both the previous and new versions of the metamodel. Thus, the

users appreciate that our tool automatically suggests solutions and

update the list based on their feedback.

5 THREATS TO VALIDITY
Conclusion validity. The parameter tuning of the different opti-

mization algorithms used in our experiments creates an internal

threat that we need to evaluate in our future work. The parameters’

values used in our experiments are found by trial-and-error. How-

ever, it would be an interesting perspective to design an adaptive

parameter tuning strategy [4] for our approach so that parame-

ters are updated during the execution in order to provide the best

possible performance.

Internal validity. An internal threat is related to the variation

of correctness and speed between the different groups when using

our interactive approach and other tools. In fact, our approach may

not be the only reason for the superior performance because the

participants have different skills and familiarity with MDE tools.

To counteract this, we assigned the participants to different groups

according to their experience so as to reduce the gap between the

different groups and we also adapted a counter-balanced design.

Regarding the selected participants, we have taken precautions to

ensure that our participants represent a diverse set of participants

with experience in model-driven engineering, and also that the

groups formed had, in some sense, a similar average skill set in

the model maintenance area. To address the fatigue threat, we

did not limit the time to fill the questionnaire and we also sent

the questionnaires to the participants by email and gave them the

required time to complete each of the required tasks.

External validity. In this study, we performed our experiments

on different widely studied models and metamodels belonging to

different domains and having different sizes. However, we cannot

assert that our results can be generalized to other artifacts, and

to other practitioners. Another threat is the limited number of

participants and evaluated models/metamodels. In addition, our

study was limited to the use of specific edit operation types. Future

replications of this study are necessary to confirm our findings.
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Figure 8: Illustration of the co-evolution solutions moving towards a region of interest selected by the user as extracted from
the experiments.

6 RELATEDWORK
6.1 Manual specification approaches
In one of the early works [41], the co-evolution of models is tackled

by designing co-evolution transformations based on metamodel

change types. In [9, 12], the authors compute differences between

two metamodel versions which are then input to adapt models au-

tomatically. This is achieved by transforming the differences into a

migration transformation with a so-called higher-order transforma-

tion, i.e., a transformation which takes/produces another transfor-

mation as input/output. In [13], the authors proposed an approach

compromises multiple steps for model co-evolution: change detec-

tion either by comparing between metamodels or by tracing and

recording the changes applied to the old version of the metamodel.

The second step is a classification of the changes in metamodel and

their impact in its instances. Finally, an appropriate migration algo-

rithm for model migration is determined. For initial model elements

for which no transformation rule is found, a default copy trans-

formation rule is applied. This algorithm has been realized in the

model migration framework Epsilon Flock [38] and in the frame-

work described in [33]. Another manual specification approach

is presented in [43] where a specific transformation language is

derived to describe the evolution on the metamodel level and derive

a transformation for the model level.

6.2 Metamodel matching approaches
Most of the mentioned approaches which are based on out-place

model transformation intend to shield the user from creating copy

rules. In order to avoid copy rules at all, co-evolution approaches

which base their solution on in-place transformations (i.e. transfor-

mations which are updating an input model to produce the output

model) have been proposed. In such approaches (cf. e.g., [20, 26, 27,

31, 42]), the co-evolution rules are specified as in-place transfor-

mation rules by using a kind of unified metamodel representing

both metamodel versions, and then, to eliminate model elements

that are not the part of evolved meta-model anymore, a check out

transformation is performed.

6.3 Operator-based approaches
Other contributions are based on using coupled operations [16,

18, 20, 28, 29, 44]. In [44] the authors provide a library of co-

evolutionary operators for MOF metamodels, each of these opera-

tors provides amodel migration strategy. In [16] the author provides

a tool support for the evolution of Ecore-based metamodels, that

records the metamodel changes as a sequence of co-evolutionary

operations that are structured in a library and used later to generate

a complete migration strategy. But, when no appropriate operator

is available, model developer does the migration manually, so those

approaches depend on the library of reusable coupled operators

they provide. To this end, the authors in [20] extended the tool

by providing two kinds of coupled operators: reusable and custom

coupled operators. The reusable operators allow the reuse of migra-

tion strategy independently of the specific metamodel. The custom

coupled operators allow to attach a custom migration to a recorded

metamodel change. In [3], an approach is presented that uses in a

first phase metamodel matching to derive the changes between two

metamodel versions and in a second phase, operations are applied

based on the detected changes to migrate the corresponding models.

Additionally, in [2], weaving models are employed to connected

the changes of the metamodels with the model elements to provide

a basis for reasoning how to perform the migration of the models

to the new metamodel versions.

Most of the above approaches focus on identifying conceptually

high-level changes to the metamodel in order to co-evolve models.

They detect such changes either by manually comparing the two

metamodel versions or by recording, matching or calculating their

differences. Thus, these approaches apply various change-specific

strategies aimed at mirroring the high-level conceptual changes.

We tackled co-evolution of artifacts without the need of computing

differences on the metamodel level. Instead, we search for solutions

which fulfill multiple goals expressed as our fitness functions. Our
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approach, gives the user a better control over the result, since we

propose a set of alternative resolution strategies (the best solutions

from the Pareto front) to the user to select appropriate ones and

interactively update them.

7 CONCLUSION
In this paper, we proposed an interactive clustering-based multi-

objective approach for metamodel/model co-evolution that reduces

the interaction effort to find relevant co-evolution solutions. The

feedback received from the designers and the clustering solutions

are used to reduce the search space and converge to better solu-

tions. We evaluate the effectiveness of our tool on several evolution

scenarios extracted from different widely used metamodels and we

compared it to fully automated and interactive co-evolution tools.

Our evaluation results provide clear evidence that our tool helped

designers to quickly express their preferences and converge toward

relevant revised models that met the their expectations.

We plan to extend this work by evolving interactively model

transformation rules and OCL constraints when the source or target

models are revised.
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