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Abstract

It is vitally important to fix quality issues in security-critical code as they may be
sources of vulnerabilities in the future. These quality issues may increase the attack
surface if they are not quickly refactored. In this paper, we use the history of vul-
nerabilities and security bug reports along with a set of keywords to automatically
identify a project’s security-critical files based on its source code, bug reports, pull-
request descriptions and commit messages. After identifying these security-related
files, we estimate their risks using static analysis to check their coupling with other
project components. Then, our approach recommends refactorings to prioritize fix-
ing quality issues in these security-critical files to improve quality attributes and
remove identified code smells. To find a trade-off between the quality issues and
security-critical files, we adopted a multi-objective search strategy. We evaluated
our approach on six open source projects and one industrial system to check the cor-
rectness and relevance of the refactorings targeting security critical code. The results
of our survey with practitioners supports our hypothesis that quality and security
need to be considered together to provide relevant refactoring recommendations.
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1 Introduction

The National Institute of Standards and Technology (NIST) estimates that the US
economy loses an average of $60 billion per year as a cost of either implementing
patches to fix security bugs and vulnerabilities or the actual impact of these security
issues (Cusumano 2004). Vulnerability is defined as a property of system security
requirements, design, implementation, or operation that could be accidentally or
intentionally exploited to create a security failure (Krsul 1998). These vulnerabili-
ties heavily depend on the way a system is designed and implemented. For instance,
many software companies use third-party code and libraries (Nikiforakis et al. 2012)
and many vulnerabilities are introduced through these external components (Han
and Zheng 1998). Thus, it is critical to identify the security-critical code fragments
when integrating new modules or to locate them in internally developed code to pro-
tect the system against possible attacks. Security-critical code refers to code frag-
ments that contain data (e.g., attributes) and logic (e.g., methods) that can poten-
tially be misused to violate security properties such as confidentiality, integrity, or
availability of a system in production.

Several studies on the detection and fixing of vulnerabilities and security bugs
(Livshits and Lam 2005; Haldar et al. 2005) show that poor quality indicators are
one of the main sources of vulnerabilities, as also emphasized by CWE (CWE-398)
(Huang et al. 2016). The Common Weakness Enumeration (CWE)! is a category
system for software weaknesses and vulnerabilities. It is sustained by a community
project with the goals of understanding flaws in software and creating automated
tools that can be used to identify, fix, and prevent those flaws. CWE-398 refers to
the types of software weaknesses that are “Indicators of Poor Code Quality”. This
provides additional evidence that code quality issues are frequently responsible for
security issues. The description of this category highlights that when the code is
complex and not well-maintained it is more likely to cause security problems and
weaknesses. However, existing refactoring research is mainly focused on improv-
ing quality attributes and fixing code smells (Ouni et al. 2013a, 2015, 2017; Mka-
ouer et al. 2014a, 2017). For instance, a developer may create a hierarchy in a set
of classes to improve the reusability quality attribute. However, these actions may
expand the attack surface if the super class contains security-critical attributes and
methods. Furthermore, the few existing studies on the prioritization of refactorings
mainly focus on the identified quality issues but without considering security as one
of the criteria, despite its importance and relevance in practice (Tsantalis and Chatz-
igeorgiou 2011; Zazworka et al. 2011; Vidal et al. 2016a). Without a direct focus on
security related quality issues, the ranking schemes of related work can potentially
ignore critical security issues because they may be given lower ranks.

In this paper, we used the history of vulnerabilities and security bug reports along
with a set of keywords [defined in the literature (Alshammari et al. 2009, 2010a)]
to automatically identify security-critical files in a project based on source code,

! http://cwe.mitre.org/about/index html.
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bug reports, pull-request descriptions and commit messages. After identifying these
security-related files, we estimated their risk based on static analysis to check their
coupling with other components of the project. For instance, a highly coupled class
which contains security-critical code fragments may contribute to compromising the
whole system if an attacker takes advantage of the code to inject malicious payloads.
Then, our approach recommends refactorings to prioritize fixing quality issues in
these security-critical files to improve quality attributes and remove identified code
smells. To find a trade-off between the quality issues and security-critical files, we
adopted a multi-objective search (Deb et al. 2002) approach.

We evaluated our approach on six open source projects and one industrial sys-
tem to check the relevance of our refactoring recommendations. The results confirm
the effectiveness of our approach comparing to existing refactoring studies based on
quality attributes and ranking the recommendations only based on their code smells
and quality severity (Ouni et al. 2016; Fokaefs et al. 2011). Our survey with practi-
tioners who used our tool supports our hypothesis that quality and security need to
be considered together to provide relevant refactoring recommendations and to rank
them.

The remainder of this paper is organized as follows: Sect. 2 discusses motivations
that inspired this research. Section 3 presents the description of our approach while
Sect. 4 contains the experiments on our methodology. Section 5 discusses threats to
validity. Section 6 surveys relevant related work and finally we conclude and outline
our future research directions in Sect. 7.

2 Motivations and challenges

Security-critical code fragments in a software project can represent code elements
(e.g. classes, methods, files) containing confidential or sensitive information such
as IDs, transactions, credit card data, authentication information, and security con-
straints. If these code fragments are over-exposed then they may result in vulnerabil-
ities that may be exploited in violating security properties (Abid et al. 2020). Code
fragments are frequently cited in security bug reports, vulnerability reports, or Stack
Overflow posts which suggests that they are at the heart of many security problems.
And often vulnerable code fragments, identified during code reviews, are analyzed
to ensure that they are carefully designed so as to reduce the attack surface in case of
potential attacks in the future (Abid et al. 2020).

The identification of security-relevant code in a software project is critical (1)
for designers to be careful when they are designing or maintaining a system. For
instance, they have to make sure that coupling is low in these security-related frag-
ments to reduce the attack surface; (2) for developers to ensure that these code frag-
ments are not over-exposed; (3) for reviewers to pay a lot of attention when review-
ing these files; and (4) for the organization to evaluate the use of third-party code
from a security perspective before any adoption or integration work. However, most
existing research tools for refactoring recommendation and prioritization (Ouni et al.
2013a, 2015, 2017; Mkaouer et al. 2014a, 2017) do not consider the security aspect
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CWE - 398 : Indicator of Poor Code Quality

CWE Definition http:, t 398.html

Number of vulnerabilities: 1

Description The code has features that do not directly introduce a weakness or vulnerability, but indicate that the product has not been carefully developed or
maintained.Programs are more likely to be secure when good development practices are followed. If a program is complex, difficult to maintain, not
portable, or shows evidence of neglect, then there is a higher likelihood that weaknesses are buried in the code.

Fig. 1 A type of software weakness from the CWE list (CWE 2009) that includes security vulnerabilities
related to poor code quality

Vulnerability Details : CVE-2018-17890

NUUO CMS all versions 3.1 and prior, The application uses insecure and outdated software components for functionality, which could allow arbitrary code execution.
Publish Date : 2018-10-12 Last Update Date : 2019-10-09

Collapse All Expand All Select ~Select&Copy Scroll To ~ Comments  + External Links
Search Twitter Search YouTube Search Google
- CVSS Scores & Vulnerability Types

Cvss Score 7.5

Confidentiality Impact
Integrity Impact

ational disclosure.)

or information

le, but the attacker does not have control over what can be modified, or the scope of

Availability Impact nterruptions in resource availability.

Access Complexity access conditions or extenuating circumstances do not exist. Very little knowledge or skillis required to exploit. )

Authentication Not required (Authentication is not required to exploit the vulnerability.)

Gained Access None
Vulnerability Type(s) Execute Code
CWE 1D 398

Fig.2 An example of a security vulnerability from NUUO CMS system due to code quality issues (Nuuo
2018)

but focus more on general quality improvements and removal of code smells when
ranking and recommending refactorings.

Nowadays, maintaining both quality and security of software systems is not
optional. Many contemporary applications are cloud-based and therefore potentially
exposed to malicious attacks. Developers are under increasing pressure to deliver
clean and reliable software systems that generate the intended outputs while making
sure that sensitive customers data is secure.

One of the main challenges when integrating both code quality and security con-
cerns into a single refactoring tool is that they may be conflicting. For example,
improving the reusability of the code may increase the attack surface due to newly
created abstractions. Also, increasing the spread of classes that contain sensitive
information in the design to improve modularity may reduce the resilience of the
system to attacks.

The Common Vulnerabilities and Exposures database (CVE) is a large, publicly
available source of vulnerability reports (Cve 2021). It aims to provide common
names for publicly known problems. As described in Fig. 1, one of the main CVE
categories is “Indicator of Poor Code Quality” (CWE-398) providing additional
evidence that code quality issues are frequently responsible for security issues. The
description of this category highlights that when the code is complex and not well-
maintained it is more likely to cause security problems and weaknesses.

Figure 2 shows an example of one detected vulnerability in the CWE-398 cate-
gory on the NUUO Intelligent Surveillance software system (Nuuo 2018) due to the
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Fig. 3 Security-critical code identification: approach overview

use of multiple outdated software components that needed to be refactored. When-
ever developers introduced changes to the system, they faced challenges to make
those changes consistently across classes; thus introducing refactoring to fix this
quality issue was critical. This vulnerability had a score of 7.5 which is considered
to be high and urgent to fix.

To overcome such challenges, in the next section we propose an approach to pri-
oritize and recommend refactorings to target the classes that have both quality and
security issues. The goal is to enable developers to spend less effort on refactor-
ing non-critical issues and make systems more secure while maintaining high code
quality.

3 Approach

The structure of our approach is sketched in Fig. 3. The first component consists
of identifying a project’s security-critical files, to evaluate and refactor, based on a
list of keywords, along with the history of security bugs and vulnerabilities detected
in the analyzed system. The list of keywords are the most common security-related
words that developers may use in naming code elements, writing comments, secu-
rity bugs and vulnerabilities reports, commits messages, and security questions/tags
on Stack Overflow.> The full list of keywords used in our approach can be found
in Fig. 1. Figure 4 shows an example of security-critical code in Apache Tomcat
identified automatically by our approach. We have also implemented a parser that
can find all the files involved in previous security bug, vulnerability reports and pull-
requests with security tags. This parser collects the CVE reports and extracts the
version numbers of the systems in which the vulnerabilities are present. Then, it
extracts the file names from the bug reports and issues reported for those versions.

2 https://stackoverflow.com/.
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Table 1 List of keywords used in our approach

Keywords
id socialsecuritynumber undercover path
userid dateofbirth crypted signature
uuid secret hashed role
password confidential top secret hostname
pwd classified restricted covered
username login hidden lock
account identifier encrypt algorithm
creditcard unique personal salt
phonenumber name address nonce
private critical cached host
privacy vulnerable security port
secure authenticator encoded backdoor
credential key connectionString payment
digital certificate administrator undercovered transaction
biometrics auth code ip-address
safe authenticate permission transcoded
confidentiality credentials access restricted access
sensitive credit card number token sensitive information
admin encrypted certificate sensitive data
access hash cover card credit email
content secret key job securitymanagement
secure client id protect private field
user details hidden field security constraint private

auth constraint member

Fig.4 An example of a security-critical code fragments identified by our approach

After identifying the list of security-critical files, we used a multi-objective
genetic algorithm, based on NSGA-II (Deb et al. 2002), to generate refactoring solu-
tions that prioritize and fix the files associated with quality and security issues. The
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quality objectives are based on code smells detected using a set of rules (Kessen-
tini et al. 2011) and the potential improvements in QMOOD quality measures (Ban-
siya and Davis 2002) defined in Table 2. The QMOOD model is computed using
11 low-level design metrics that are also defined in Bansiya and Davis (2002). We
considered code smells and QMOQD as separate objectives since developers may
want to understand the impact of fixing the code smells on the quality attributes
to reason about the relevance of recommended refactorings. The second objective
estimates the importance of the refactored security-critical files based on a combina-
tion of textual, history and static analysis measures. The textual analysis is based on
matching scores between the keywords and the source code files (e.g. names of code
elements, comments). The static analysis calculates the coupling score of a class
with other classes in the project: the most severe security-critical code fragments
are the ones that are highly coupled (Chowdhury and Zulkernine 2011). The third
measure counts the number of occurrences of the security-critical files in previous
security bugs, vulnerability reports, and pull-requests with security tags to evalu-
ate and refactor. Thus, the second objective will favor refactoring solutions targeting
important security-critical files.

In the next sub-sections, we give details about each of these two major
components.

3.1 Security-critical file detection

To detect security-critical files, we combined three different measures of textual,
static and history analyses. All three measures are normalized to values between 0
and 1 using the min max formula (Yu et al. 2009). We then calculated their average
score to rank the security-critical files.

With the chosen set of keywords, we calculated a textual security-critically-
score for each file to estimate the extent to which the file is related to security con-
cerns and hence needs to be protected. The higher the score is the more likely the
file is security-critical. We compute the textual security-criticality-score based on
cosine similarity between each file and the set of keywords. Let n be the number
of files in the source code and W an array containing the set of keywords. After
pre-processing the source code including tokenization, lemmatization, stop words
filtering and punctuation removal, we calculate the tf-idf score considering the file
f-i€{L,2,...,n,}and W as corpus. Cosine similarity is then calculated as follows:

sim(f;,, W) = tf —idf(f;,, W) = transpose(tf — idf (f;,, W)) (1)

A file with security-critical code may spread its vulnerability to its connected files in
the system. Therefore, we parse the source code and compute a coupling metric as a
second measure for all classes in each file. The coupling metric for each file is then
equal to the average of the coupling metrics of all of its classes.

We define coupling of a class as the number of Call-Ins and Call-Outs
from that class (Mkaouer et al. 2016). Let m be the number of classes in file f,
C={c;,cy,...,c,} the set of classes in f; and cp; the coupling metric for class Cjs
the coupling metric for file f; is:
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Juad Line Chart of Solutions + 02 0

Fig.5 An example of a Pareto front of refactoring solutions generated by our tool for OpenCSV project

hy ep;
cp; = =/~ (2)
m
which is the average of the coupling of the classes contained in file f;.

The third history-based measure simply counts the number of occurrences of the
source code files in previous security bugs, vulnerability reports and pull-requests
of code reviews with security tags. We normalized the values of the coupling metric
into [0,1] using normalization min max formula. Thus, if a file with high cosine
similarity score is highly coupled and appeared in previous security bugs or vulner-
ability reports, then it is considered as critical and should be refactored if the con-
fidential data it contains is accessible or could be compromised. If a file with high
cosine similarity score is not highly coupled and was not vulnerable before, then it is
not urgent to be refactored. The average score of all the three measures reflect these
intuitions.

3.2 Refactoring prioritization for identified security-critical code

We adapted a multi-objective search algorithm, based on NSGA-II (Deb et al. 2002),
to optimize three objectives that take into account both the security and the quality
of the software system. We chose this algorithm because it was used before in simi-
lar software engineering problems (Mkaouer et al. 2014b; Ouni et al. 2013a, b) and
was proven to be able to balance independent or even conflicting objectives.

The algorithm is executed to find a set of non-dominated solutions balancing the
objectives of security, code smells and quality attributes.With our multi-objective
tool, the developer does not have to assign weights to the objectives. The user can
select a solution from the Pareto-front of non-dominated solutions based on his
needs and priorities as shown in Fig. 5. The x-axis represents the different objec-
tives (i.e. security, code smells, and quality attributes). The lines are the Pareto
optimal refactoring solutions (i.e those that are not dominated by any other feasi-
ble solutions). This plot gives full information on objective values and on objective
trade-offs, which inform how improving one objective is related to deteriorating the
second one. The developer takes this information into account while specifying the
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preferred Pareto optimal objective point. The developer can also interact with our
tool and give feedback by accepting or rejecting the refactoring recommendations.

In the following subsections, we summarize the adaptation of the multi-objective
algorithm to our problem.

3.2.1 Solution representation

In our adaptation, a refactoring solution is an ordered vector of refactoring opera-
tions. A refactoring operation is composed of a type as well as a set of controlling
parameters such as attributes, source class, target class, and methods. We used 14
different refactoring types, as follows: Encapsulate Field, Increase Field Security,
Decrease Field Security, Pull Up Field, Push Down Field, Move Field, Increase
Method Security, Decrease Method Security Pull Up Method, Push Down Method,
Move Method, Extract Class, Extract Super class, and Extract Subclass. For every
refactoring, we specified the pre- and post-conditions (detailed in Opdyke 1992) to
ensure the feasibility of the operation and to ensure that we did not alter the external
behavior of the code. To better understand the concept of pre- and post-conditions,
let us consider the refactoring rename method M. Before we apply the refactoring
we need to make sure that there exist no method with the same name as M in that
class. Post-conditions would be: If M is overridden in any sub class, its name should
be changed such that it is same as its inherited method’s name. Also, all calls with
the new function name in all the clients should be replaced (if any). It is important
to note that the order of the refactorings in the solution vector matters. We apply
refactorings in the same order as they appear in the prioritization vector. Figure 6

D Actions Refactoring

LI accept [ reject Extr
view @XIDEES

WOl occept | rojoct
N cocopt | rojoct

VI accept | reject

Wl accept [ rojoct

I aocopt | rojoct

LI accept [ reject

° 10«  Displaying1-10of 15 records

Fig.6 An example of a solution generated by our tool
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shows an example of a solution generated by our multi-objective tool containing q
sequence of refactorings for OpenCSV and the user can interact with: by accepting,
modifying and rejecting any of them.

3.2.2 Quality metrics

Bansiya and Davis (2002) provided a set of concrete measures of software quality by
defining a statistical model for object-oriented programs. This model, called Quality
Model for Object Oriented Design (QMOOQOD), is composed of six high-level design
quality attribute metrics (defined in Table 2) and these are calculated using 11
lower-level metrics. We selected this model because it is commonly used in industry
to estimate code quality (O’Keeffe and Cinnéide 2008; Jensen et al. 2010; Lee et al.
2011), and in refactoring studies (Alizadeh and Kessentini 2018; Harman and Tratt
2007; Ouni et al. 2013a; Shatnawi and Li 2011).

3.2.3 Fitness functions

Our approach takes into consideration 3 objectives: the first one is the sum of the
relative changes of the 6 QMOOQOD attributes after applying a refactoring solution.
This objective can be written as follows:

6 Qufter _ Qbefore

z i i

n=1

Q?eﬁ)re (3)
where Qf.’d " and Q;’f " are the values of the QualityAttribute,; before and after apply-
ing a refactoring solution, respectively.

Most code anti-patterns can be detected using interface and code quality metrics.
In our study, we used an existing antipattern detection tool based on rules (Kessentini
et al. 2011) that can detect 11 types of antipatterns defined in Table 3. The descrip-
tion of these antipatterns can be found in the website associated with this paper (CWE
2009). We have chosen this tool because of its high accuracy. Using this measure we
have defined the second fitness function as the value of the anti-patterns “fixed” by the
refactoring solution. This objective can be written as follow:

FS
Z antipatterns; “4)

i=1

where FS is the total number of files in the system and antipatterns; is the number of
fixed antipatterns in the file i by the refactorings solution.

In the third fitness function, we maximize the number of critical files to refactor.
This objective can be written as follows:

F
2 Severity; Q)
i=1
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Table 3 List of the detected antipatterns (Brown et al. 1998; Fowler 2018; Palomba et al. 2014)

Antipattern Definition

BLOB A class that is too large and not cohesive enough, that monopolises most
of the processing, takes most of the decisions, and is associated to data
classes

Lazy class A class that has few fields and methods (with little complexity)

Long method A class that has a method that is overly long, in term of LOCs

Long parameter list A class that has (at least) one method with a too long list of parameters
with respect to the average number of parameters per methods in the
system

Message chains A class that has (at least) one method with a too long list of parameters
with respect to the average number of parameters per methods in the
system

Refused parent bequest (RPB) A class that redefines inherited method using empty bodies, thus break-
ing polymorphism

Spaghetti code A class declaring long methods with no parameters and using global
variables. These methods interact too much using complex decision
algorithms. This class does not exploit and prevents the use of poly-
morphism and inheritance

Feature envy A method making too many calls to methods ofanother class to obtain
data and/or functionality

Inappropriate intimacy Occurs when one class accesses to the internal parts that should be
private of another class

CDSBP A class that exposes its fields, thus violating the principle of encapsula-
tion

Speculative generality A class that is defined as abstract but that has very few children, which

do not make use of its methods

where F is the total number of selected critical files and severity; is the severity score
of file i selected for refactoring. This severity score is the average of the three tex-
tual, history and static measures described previously.

4 Experiment and results

In this section, we first present our research questions and validation methodology
followed by our experimental setup and our results.

4.1 Research questions

We defined three main research questions to measure the relevance, efficiency
and usefulness of our approach comparing to the state of the art (Ouni et al. 2016;
Fokaefs et al. 2011) based on several practical scenarios. It is important to evaluate,
first, the manual correctness of the recommended refactorings. Since it is not suf-
ficient to make correct recommendations, we evaluated the efficiency of these refac-
torings by ranking their importance to developers. In practice, they are not interested
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to check and apply all the correct refactorings due to limited resources but they
focus on the most important ones before the release deadline. We have also used
post-study questionnaires to evaluate the benefits of our approach and the relevance
of our results.

The three research questions are as follows:

RQI1.Relevance and comparison to existing refactoring techniques To what extent are
the refactorings recommended by our approach relevant, compared to existing
refactoring techniques based on improving quality measures (Ouni et al. 2016;
Fokaefs et al. 2011)?

RQ2.Ranking efficiency To what extent can our approach efficiently rank recom-
mended refactorings compared to existing techniques (Ouni et al. 2016; Fokaefs
etal. 2011)?

RQ3.Insights How do programmers evaluate the impact of our approach in practice?

To answer RQ1, we validated our approach on six medium to large-size open-source
systems and one industrial project to manually evaluate the relevance of the rec-
ommended refactorings based on both quality and security. The relevance of rec-
ommended refactorings corresponds to the manual inspection by developers if they
found the refactoring correct to apply. In that case, the developers chose the action to
‘accept’ a refactoring recommendation as shown in Fig. 6.

To this end, we used the Manual Correctness (MC@k) precision metric. MC @k
denotes the number of correct refactorings in the top k recommended refactorings
by the solution divided by k. It is unrealistic to calculate the recall since it requires
the inspection of the entire system. We further address RQ/ by interviewing the par-
ticipants who analyzed the output of our approach on the industrial project, who are
among the original developers of that system (as detailed in the next section).

We asked a group of 32 participants to manually evaluate the relevance of
the top k refactorings that they selected using the different tools. We compared
our approach to two fully-automated refactoring tools: Ouni et al. (2016) and
JDeodorant (Fokaefs et al. 2011). Ouni et al. (2016) proposed a multi-objective
refactoring formulation based on NSGA-II that generates a solution to maximize
treatment of several quality attributes and antipatterns. JDeodorant (Fokaefs et al.
2011) is an Eclipse plugin to detect antipatterns and recommended refactorings
based on a set of templates. As JDeodorant supports a lower number of refactor-
ing types with respect to the ones considered by our tool, we restrict our com-
parison with it to just these refactorings. We compared our work to JDeodorant
and Ouni et al. (2016) because (1) they are the only publicly available automated/
semi-automated JAVA refactoring recommendation tools (most of existing tools
are more related to detection of refactoring opportunities and not semi-automated/
automated refactoring recommendations) and the used techniques are different
(deterministic versus search-based); (2) both studies are focusing on improving
similar quality attributes of our work but without considering the security aspect;
and (3) they were evaluated in previous studies based on the same systems used
in this paper. We believe that this benchmark is adequate to show the value of
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Table 4 Demographics of the studied projects

System Release # Classes KLOC GitHub link

tink v1.2.2 590 185 google/tink.git

pac4j v3.6.1 975 67 pac4j/pacdj.git

atomix v3.0.11 2719 188 atomix/atomix.git
securitybuilder v1.0.0 313 81 tersesystems/securitybuilder.git
rest.li v15.0.3 4185 478 linkedin/rest.li.git

firefly v4.9.5 2188 154 hypercube1024/firefly.git

DAS v7.6.1 973 326 N.A.

considering security critical files at the top of typical quality metrics improve-
ment (used in those existing tools). The comparison with Ouni et al. (2016) can
confirm that the outperformance compared to JDeodorant is not due to the search
algorithm itself.

Furthermore, we implemented a sanity check approach where we used our multi-
objective algorithm with only the quality and antipatterns objectives and then ranked
the recommended refactorings based on the security severity measure. Thus, we can
evaluate the benefits of considering maximizing the refactoring of security-critical
files with quality issues as a separate objective rather than using that function to
rank the recommended refactorings. Finally, we compared our work with a mono-
objective genetic algorithm combining all the three objectives into one function with
equal weights so we can evaluate whether the various objectives are conflicting.

We note that the mono-objective approach and JDeodorant only provide one
refactoring solution while the other algorithms generate sets of non-dominated solu-
tions. To make meaningful comparisons, we selected the best solution for the multi-
objective algorithms using a knee-point strategy. The knee point corresponds to the
solution with the maximal trade-off between the objectives. Thus, we selected the
knee point from the Pareto approximation having the median hyper-volume /HV
value. By that strategy, we ensure fairness when making comparisons against the
mono-objective and deterministic techniques.

The antipatterns and internal quality indicators were not used as proxies for esti-
mating the refactoring relevance since the developers’ manual evaluation already
includes a review of the impact of suggested changes on quality. We also wanted to
avoid any bias in our experiments since antipatterns and quality attributes are con-
sidered in the fitness functions of our approach. Furthermore, not all the refactorings
that improve a quality attribute are relevant to the developers. The only fair way to
evaluate the relevance of our tool is thus manual evaluation of the results by active
developers.

To answer RQ2, we evaluated the ranking efficiency of the refactorings by asking
the participants to manually rate their importance: high, medium, or low. Then, the
evaluation metric importance @k calculates the number of refactorings rated “high”
in the top k, divided by k. Of course, this measure is applied in the order of refactor-
ings generated by the various approaches.
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Table5 Selected programmers

System # subjects  Avg. prog. exp. Avg. refactoring exp.
tink 5 6.5 Very high

pac4j 5 7.5 High

atomix 5 9 High

securitybuilder 5 8 Very high

rest.li 5 8 Very high

firefly 5 9 High

DAS 2 12.5 Very high

To answer RQ3, we used a post-study questionnaire that collected the opinions
of developers on our tool and the relevance of refactoring security-critical files on
software projects.

4.2 Software projects and experimental setting
4.2.1 Studied projects

We used a set of well-known open-source and one system from our industrial part-
ner, a software company with a focus on e-commerce and web development. We
applied our approach to six open-source Java projects: tink, pac4j, atomix, security-
builder, rest.1li and firefly. Tink provides a simple and misuse-proof API for common
cryptographic tasks. Pac4j is a security engine system. Atomix is an event-driven
framework for coordinating fault-tolerant distributed systems. Securitybuilder is a
fluent builder API for JCA and JSSE classes and especially X.509 certificates. Rest.
li is a framework for building scalable RESTful architectures. Firefly is an asyn-
chronous framework for rapid development of high-performance web application.
Among the 6 systems, there are only 2 security projects that we selected intention-
ally to check if our approach can propose similar results to non-security projects.

To get feedback from the original developers of a system, we ran our experiment
on a large industrial project, called DAS, provided by our industrial partner. The
analyzed project can collect, analyze and synthesize a variety of data and sources
related to online customers such as their shopping behavior. It was implemented
over a period of 9 years, frequently changed over time, and had experienced several
vulnerabilities.

We selected these systems for our validation because they range from medium
to large-sized and have been actively developed over several years, they are widely
used by companies as third party code and several previous vulnerabilities were
detected on them. Table 4 provides some demographic data on these systems. The
data collected on these systems included the history of bug reports, vulnerability
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reports and pull-requests to identify ones with security tags. The security bugs and
vulnerabilities were extracted from The Common Vulnerabilities and Exposures
database (CVE) (Cve 2021). We also downloaded bug reports from Bugzilla;3 then
we filtered them using the list of security keywords that we used as well to detect
security critical files (Fig. 1). The list of keywords [defined in the literature (Walden
et al. 2014; Scandariato et al. 2014; Tang et al. 2015)] are the most common security
related words that developers may use in naming code elements, writing comments,
security bugs and vulnerabilities reports, commits messages, and security questions
or tags on Stack Overflow.*

4.2.2 Subjects

Our study involved 30 graduate students and 2 software developers from the
industrial partner. Participants included 24 Master’s students in Software Engi-
neering, 6 Ph.D. students in Software Engineering and 2 software developers.
All participants were volunteers who were familiar with software security, refac-
toring, Java and quality assurance. All the Master’s students were working full-
time in industry as developers, managers, or architects. They average 6 years of
experience in industry and 16 out of the 24 have worked on either fixing security
bugs or patching vulnerabilities. Participants were first asked to fill out a pre-
study questionnaire containing six questions. The questionnaire helped to collect
background information such as their role within the company, their program-
ming experience, and their familiarity with software refactoring and security.
Although the vast majority of participants were already familiar with refactor-
ing, all the participants attended one lecture of 2 h on software refactoring by
the organizers of the experiments. The details of the selected participants can
be found in Table 5, including their programming experience (years) and level
of familiarity with refactoring. Each participant was asked to assess the mean-
ingfulness of the refactorings recommended after using one of the five tools on
one system to avoid a training threat. The participants did not only evaluate the
suggested refactorings but were asked to configure, run and interact with the
tools on the different systems. The only exceptions were related to the two par-
ticipants from the industrial partner where they agreed to evaluate only their
industrial software. We assigned tasks to participants according to the studied
systems, the techniques to be tested and developers’ experience. To avoid any
potential bias, we did not share with the participants the goal of the study to val-
idate the hypothesis about if security metrics are important to consider, beyond
just quality metrics, when refactoring the source code. To ensure a fair compari-
son, none of the participants used any of the studied tools before.

3 https://www.bugzilla.org/.
4 https://stackoverflow.com/.
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4.2.3 Experimental setting

For each algorithm and for each system, we performed a set of experiments using
several population sizes: 50, 100, 150 and 200. Then, we specified the maximum
chromosome length (maximum number of refactorings). The resulting vector
length is proportional to the size of the program to refactor. Thus, the upper and
lower bounds on the chromosome length were set to 10 and 100, respectively.
The stopping criterion was set to 10,000 fitness evaluations for all algorithms to
ensure fairness. To have significant results, for each pair (algorithm, system), we
used a trial and error method (Arcuri and Briand 2011) for parameter configura-
tion. Trial and error is a fundamental method of problem solving. It is character-
ized by repeated and varied attempts of algorithm configurations.

4.3 Results

Results for RQ1 Figures 7 and 8 confirm that our approach was able to identify rel-
evant refactorings among the top recommendations on the six open source systems
and the industrial project. Figure 7 shows the average manual correctness (MC@k)
results of our technique on the different seven systems, with k ranging from 3 to 10.
For example, all the recommended refactorings in the top 3 are considered relevant
by the participants. Most of the refactorings recommended by our Multi-Objective
refactoring search (MORS) approach in the top 5 (k = 5) are relevant with an aver-
age MC@5 of 92%. The lowest average of manual correctness is 70% for k = 10
which is still acceptable since it means that just 3 recommendations out of the 10
are not relevant (even if they are correct). For instance, the refactoring recommenda-
tions on the DAS (industrial) system, evaluated by the original developers, are con-
sidered all correct for k = 3 and k = 5 and only two refactorings were not relevant

100
20 | | |
o u
tink pacé) securitybuilder rest frefy oas
Mc@3 GA uMC@3 Jdeodorant

Fig. 7 The manual evaluation scores (MC@Xk) on the seven systems with k = 3, 5 and 10
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Fig. 8 Average execution time, in minutes, on the seven systems

for k = 10. It is normal that some refactorings related to security-critical files may
not be considered relevant for several reasons such as the risk.

to break the code versus their benefits. However, our results suggest that develop-
ers are interested to refactor security-critical files, particularly considering that the
participants were not aware of the goals of the study (e.g., security). Figure 8 sum-
marizes the execution times of our approach on the different systems. The average
execution time is 11 min. The highest execution time was observed on the industrial
system (14 min). It is normal that execution time is correlated with the size of the
analyzed systems since the tool has to parse the files to identify the most security-
critical ones, and then run NSGA-II with the different three objectives. We consider
the execution times reasonable since we are not addressing a real-time problem. Fur-
thermore, execution times can be reduced further during subsequent executions of
the tool since we may only focus on recently modified, instead of running the algo-
rithms on the entire system.

In terms of comparison with existing refactoring techniques, it is clear from the
results that our Multi-Objective refactoring search (MORS) approach generated
more relevant refactorings as compared to the tools of Ouni et al., JDeodorant, the
mono-objective search, and a multi-objective search based on two quality objectives
combined with a ranking of refactorings based on the security measure (NSGA-
II+Ranking). When manually comparing the results of the different tools, we found
that the remaining automated refactorings generated a lot of refactorings compar-
ing to our approach. In fact, the participants were not interested to blindly change
anything in the code just to improve quality attribute measures. The mono-objec-
tive search performed worse than the different multi-objective approaches on all the
systems which confirms the conflicting nature of the different objectives. In other
words, the aggregation of the quality and security objectives in a mono-objective
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algorithm reduces the performance of the search algorithm compared to multi-
objective algorithms where they are treated as separate objectives. The reason is that
improving the quality metrics may deteriorate the security metrics of the system.
For example, extracting subclasses from a superclass, may expand the attack sur-
face if the superclass contains security-critical attributes and methods. This is due to
the fact that if an attacker can access the superclass and inject code then this secu-
rity thread can be expanded easily and quickly to all its children classes. Thus, our
hypothesis is that quality and security are two conflicting objectives which implies
that the mono-objective search is not appropriate to solve this problem.

In terms of execution time, we found that our performance was worse than exist-
ing techniques, due to the higher number of objectives and parsing the files to iden-
tify the critical ones. JDeodorant has the best execution time of approximately 2 min
per project. To conclude, the execution time is still reasonable for all the studied
approaches, especially considering that there are no hard time constraints when per-
forming refactoring.

To answer RQI, our results for the six open source systems and the industrial
system using the different evaluation metrics of relevance and execution time clearly
validate the hypothesis that our approach can generate relevant refactorings for secu-
rity-critical files.

Results for RQ2 To evaluate the efficiency of our approach in ranking the refac-
toring operations based on the combination of quality and security objectives, we
used the importance @k measure to evaluate the importance of recommended refac-
torings. The participants only considered refactorings that were evaluated as relevant
in RQI. Thus, the goal is to validate the hypothesis that the refactorings related to
security-critical files are the most important ones, from the developers’ perspectives,
by comparing the proposed ranking to existing approaches that ranking primarily on
code quality measures.

Figure 9 indicates that the use of the three objectives of code quality and secu-
rity to find and rank the refactorings based on NSGA-II leads to efficient rankings
of recommended refactorings. The majority of the identified refactorings located
in the top 3, 5 and 10 were rated high in terms of importance by the participants.
An average of 100%, 91%, and 83% of importance @k scores are achieved for k =
3, 5, and 10 respectively on all the systems. It is clear from the figure as well that
our MORS approach outperforms all the other techniques including the ranking
of the refactorings based on the security measure after running NSGA-II on only
the two quality objectives (NSGA-II + Ranking). This confirms the relevance
of our choice to integrate security as a separate objective to help the algorithm
converge on refactorings targeting security-critical files. However, the NSGA-II
+ Ranking approach outperformed all the existing refactoring approaches based
only on quality measures to rank the recommended refactorings.

Results for RQ3 We summarize in the following the feedback of the developers
based on the post-study questionnaire.

All participants agreed on the benefits of refactoring security-critical code.
They mentioned a number of advantages such as the early identification and
prevention of vulnerabilities, the reduction of security breaches as well as the
maintenance effort and prioritizing of files that should be carefully reviewed and

@ Springer



4 Page 20 of 28 Automated Software Engineering (2021) 28:4

Table 6 Top 3 ranked solutions by the participants

Solution ID # of refactored security- Sum of quality metrics Sum of code Ranking
critical files smells

1164622 10 0.83367444 21
1164645 5 1.04797722 12 3
1164651 15 0.67012856 4

100

i H! | \, _

{1 W

; | H | l, J

: H! H | | |

tink pacd atomi securitybuilder restli frefly DAS

' Importance@3 MORS #Importance@3 NSGA-li+Ranking 1 Import
 Importance@ MORS importance®S NSGA-Ii+Ranking m Import

B Importance@10 MORS B importance@10 NSGA-Ii+Ranking M Importance@10 Ouniet al importance@10 Jdeodorant

Fig. 9 The importance@k scores on the seven systems with k = 3, 5 and 10

refactored before approving new commits or releases. Some participants high-
lighted the benefit of catching test credentials that developers forgot to remove via
some refactorings, which is a common mistake among developers. The misuse of
these hard-coded credentials is actually an example of the Broken Authentication
vulnerability, which is ranked second among the OWASP-TOP 10 Vulnerabilities
in web applications in 2018.

The participants emphasized the relevance of refactoring security-critical code
fragments for the potential increase in code quality and avoiding confidential data
exposure which may result in less cost and better reputation for the organization.
Two developers also mentioned the benefit of predicting and avoiding security
issues when integrating third party code. For instance several companies are con-
cerned about vulnerabilities when integrating open source projects. Table 6 shows
three different refactoring solutions, their fitness values and the ranking assigned
by the participants. Solution 1164622 improves quality and security each moder-
ately. Solution 1164645 focuses on improving quality metrics and fixing code smells
more than the security aspect of the system. Finally, solution 1164651 is more con-
cerned about refactoring security-critical files than improving the quality of the
code. The results reveal that most participants prefer solution 1164622 that finds
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a good trade-off between the quality and security of the system. Solution 1164651
and 1164645 are ranked second and third, respectively, which shows that most of
the participants prioritized security as the most critical reason for refactoring, even
compared to improving quality metrics which is the second most important motiva-
tion for refactoring.

Several comments mentioned the potential use of our tool at different stages of
the software life cycle, whether during the development stage where developers
are alarmed that they are dealing with critical-code, or during code reviews before
releases when reviewers focus on the changes made on that portion of code, or
even during documentation where all these alerts are recorded for developers in the
future. The participants see our tool as relevant for existing continuous integration
(CI) and continuous delivery (CD) tools.

Finally, all developers confirmed that they have never used or heard of a tool that
leverages this technique for automated refactoring of security-critical code. The
practitioners from the industrial partner confirmed that they are not aware of a simi-
lar tool. Currently security-critical code fragments are manually identified and refac-
tored during code reviews and a lot of them are missed during that process. And the
proposed tool has subsequently been licensed to this partner (in collaboration with
the university technology transfer office of the authors).

5 Threats to validity

In our experiments, construct validity threats are related to the absence of similar
work that prioritize refactoring for both security and quality purposes. For that rea-
son, we compared our proposal mainly with existing studies that focus on improv-
ing quality via refactoring. A construct threat can also be related to the corpus of
data used in our experiments since it may introduce some noise to the quality of our
results especially with the subjective nature of refactoring. Since we used a variety
of computational search and machine learning algorithms, the parameter tuning used
in our experiments creates an internal threat that we need to evaluate in our future
work. The parameter values used in our experiments are found by trial-and-error.
However, it would be an interesting perspective to design an adaptive parameter tun-
ing strategy for our approach so that parameters are updated during the execution in
order to provide the best possible performance.

The variation of correctness and speed between the different participants when
using our approach and other tools can be one internal threat. Our approach may not
be the only reason for the superior performance because the participants have differ-
ent programming skills and familiarity with refactoring tools. To counteract this, we
assigned the developers to different systems according to their programming expe-
rience so as to reduce the gap between the different groups, and we also adopted a
counter-balanced design. Regarding the selected participants, we have taken precau-
tions to ensure that our participants represent a diverse set of software developers
with experience in refactoring, and also that the groups formed had, in some sense, a
similar average skill set in the refactoring area.
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Also, the fact that we did not ask all the participants to evaluate all the systems
using all the tools can be considered another threat to the validity of our work. The
reason is that it is not reasonable to ask programmers to evaluate more than 30 exe-
cutions per algorithm to perform the statistical tests. We sacrificed a bit the rigor
of the analysis to have our research validated by practitioners and get meaningful
results.

External validity refers to the generalization of our findings. In this study, we per-
formed our experiments on 6 different widely-used open-source systems belonging
to the different domains and with different sizes and one industrial project. We con-
sidered a mix of security and non-security projects to evaluate the performance of
our approach. However, we cannot assert that our results can be generalized to other
applications, to programming languages other than JAVA, and to other developers
than the 32 participants of our experiments.

6 Related work
6.1 Code fragments accessibility

Grothoff et al. (2007) present a tool called JAMIT to restrict access modifiers from
security perspective. Specifically, the authors analyzed whether a class is confined
to the package to which it is declared so the goal is to guarantee that a reference to a
class cannot be obtained outside its package. The validation focused on reporting the
percentage of classes that could be confinable.

Bouillon et al. (2008) present a tool that checks for over-exposed methods in Java
applications. Their tool determines the best access modifier by analyzing the refer-
ences to each method. Miiller (2010) uses bytecode analysis to detect those access
modifiers of methods and fields that should be more restrictive.

Steimann and Thies (2009) highlight the difficulties of carrying out refactoring in
the presence of non-public classes and methods. The authors formalize accessibility
constraints in order to check the preconditions of a refactoring (e.g., moving a class
to another package requires checking whether the accessibility of the class allows
its users to still reference it). In particular, the authors analyze the cases in which a
class or a method is moved between packages or classes with the goal of adapting
their access modifiers to preserve the original behavior.

Zoller and Schmolitzky (2012) present a tool called AccessAnalysis to detect
over-exposed methods and classes by analyzing the references to code elements.
Kobori et al. (2015) investigated the evolution of over-exposed methods and fields
for a set of open-source applications. They reported that the change of access modi-
fiers of methods is not frequent. They also found that the number of over-exposed
methods and fields tends to increase in time.

Vidal et al. (2016b), presented two empirical studies on over-exposed methods
with the goal of analyzing their impact on information hiding and the interfaces of
classes, and over exposed classes (Vidal et al. 2016c¢). In both studies, they analyzed
the history of the systems with the goal of understanding the variations in the over-
exposed methods. They expanded and improved their work on method accessibility
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to class accessibility in Vidal et al. (2016¢) and presented an Eclipse plugin to make
component public interfaces match with the developer’s intent.

To summarize, the goal of this first category of work is mainly to use static analy-
sis to identify over-exposed code fragments whether related to security or not but
without recommending refactorings.

6.2 Software security metrics

In this category of studies, the main focus is to measure the security of software
components (Agrawal and Khan 2012, 2014; Alshammari et al. 2009, 2010a; Wang
et al. 2018; Wright et al. 2013; Srivastava and Kumar 2018; Chowdhury et al. 2008).

Chowdhury et al. (2008), proposed an approach to measure the security of the
code using a set of quality metrics. They proposed metrics that aim to assess how
securely a system’s source code is structured. The metrics are stall ratio, coupling
corruption propagation, and critical element ratio. One shortcoming related to this
work is that some of the metric values are decided based on intuition. For example,
finding out the critical elements in a class depends on the intuition of the data col-
lectors and it should be manually tagged.

Alshammari et al. (2010a), presented a set of metrics to measure the security of
each class in an object oriented design projects. To measure the security of each
class, they utilized two properties of object oriented design: the accessibility of, and
interactions within, classes. To measure the security of object oriented design, they
defined the metrics based on quality metric, including composition, coupling, exten-
sibility, inheritance, and design size. In order to identify if an attribute is critical (i.e.
carrying critical information), they assumed that developers/designers have anno-
tated class diagrams such as UMLsec and SPARK’s annotations with a secrecy tag
for each critical attribute in the design.

Agrawal and Khan (2012) presented an investigation of how coupling induces
vulnerability propagation in an object oriented design. They introduce a metric
to measure Coupling Induced Vulnerability Propagation Factor (CIVPF) for an
object oriented design. Their main idea behind this research is that Coupling is one
of the means responsible for the vulnerability propagation. In order to compute
CIVPF, they introduce some characteristics for an attribute to be vulnerable. Then,
they defined the vulnerable method and class based on their access to vulnerable
attributes.

The same authors later studied the role of cohesion for object oriented design
security and proposed security metrics measuring the impact of cohesion on secu-
rity vulnerability (Agrawal and Khan 2014). Highly cohesive classes are more
understandable, modifiable and maintainable (Agrawal and Khan 2014). Their work
is based on the assumption that in object oriented design, when a vulnerable attrib-
ute is spreading from one class to another it may compromise the whole system.
They have proposed three metrics to measure the vulnerable association of a method
in a vulnerable class, vulnerable association within a class and vulnerable associa-
tion of an object oriented design. However they claim that computing these three
metrics does not require any type of documents including Collaboration Diagrams,
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Sequence Diagram, State Diagram and Class Hierarchy, but it does require that an
attribute should be labeled as vulnerable manually.

6.3 Refactoring for security

Maruyama and Omori (2011) presented a tool named Jsart (Java security-aware
refactoring tool) that supports two types of refactorings related to software security,
which is built as an Eclipse plug-in. It helps programmers to estimate the impact
of the application of refactorings on security characteristics of the changed files by
detecting the downgrading of the access level of a field variable within the modified
code. In another study, the authors in Alshammari et al. (2010b) and Mumtaz et al.
(2018) assessed the impact of refactoring rules on the security of object-oriented
applications by computing security metrics and code smells before and after refac-
toring. However, the two studies mentioned above do not provide refactoring rec-
ommendations to developers to help them know what refactorings to use and what
classes they should target.

Ghaith et al. (2012) present a search-based approach to automate the refactor-
ing process while improving software security. They used the search-based refactor-
ing platform, Code-Imp, to refactor the code. The fitness function used to guide the
search is based on a set of software security metrics they collected from existing
work. However, the main objective of the refactoring process is to improve the secu-
rity of the system and they did not focus on the quality of the code and design.

6.4 Search-based refactoring

Search-based techniques (Harman and Jones 2001; Kessentini et al. 2010; Mansoor
et al. 2017) are widely studied to automate software refactoring where the goal is to
improve the design quality of a system based mainly on a set of software metrics. The
majority of existing work combines several metrics in a single fitness function to find
the best sequence of refactorings. Seng et al. (2006) have proposed a single-objective
optimization approach using a genetic algorithm to suggest a list of refactorings to
improve software quality. The work of O’Keeffe and Cinnéide (2008) uses various
local search-based techniques such as hill climbing and simulated annealing to provide
an automated refactoring support. They use the QMOQOD metrics suite to evaluate the
improvement in quality. The majority of existing multi-objective refactoring techniques
(Harman and Tratt 2007; Ouni et al. 2016; Mkaouer et al. 2015; Cinnéide et al. 2012;
Kessentini et al. 2018) propose as output a set of non-dominated refactoring solutions
(the Pareto front) that find a good trade-off between the considered maintainability
objectives. This leaves it to the software developers to select the best solution from a set
of possible refactoring solutions, which can be a challenging task as it is not natural for
developers to express their preferences in terms of a fitness function value. Thus, the
exploration of the Pareto front is still performed manually.

Some recent studies (Lin et al. 2016; Alizadeh et al. 2018) extended a previous work
(Mkaouer et al. 2014b) to propose an interactive search based approach for refactoring
recommendations. The developers have to specify a desired design at the architecture
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level then the proposed approach try to find the relevant refactorings that can generate a
similar design to the expected one. In our work, we do not consider the use of a desired
design, thus developers are not required to manually modify the current architecture of
the system to get refactoring recommendations. Furthermore, developers maybe inter-
ested to change the architecture mainly when they want to introduce an extensive num-
ber of refactorings that radically change the architecture to support new features.

7 Conclusion

We have presented an approach to recommend refactorings for security critical files
while concurrently improving the code quality of a software project. We used the his-
tory of vulnerabilities and security bug reports along with a selected set of keywords
(Alshammari et al. 2009, 2010a) to automatically identify security-critical files in a pro-
ject based on source code, bug reports, pull-request descriptions and commit messages.
After identifying these security-related files we estimated their risk based on static anal-
ysis to check their coupling with other components of the project. Then, our approach
recommended refactorings to prioritize fixing quality issues in these security-critical
files to improve code quality measures and remove code smells using multi-objective
search. We evaluated our approach on six open source projects and one industrial sys-
tem to check the relevance of our refactoring recommendations. Our results confirm the
effectiveness of our approach as compared to existing refactoring approaches.

We are planning, as part of our future work, to extend our validation with a larger
set of systems and data sets and to study the potential correlations between security
and code quality metrics during the refactoring process.
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