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Abstract

Metamodels evolve even more frequently than programming languages. This evolution process may result in a large number
of instance models that are no longer conforming to the revised metamodel. On the one hand, the manual adaptation of
models after the metamodels’ evolution can be tedious, error-prone, and time-consuming. On the other hand, the automated
co-evolution of metamodels/models is challenging, especially when new semantics is introduced to the metamodels. While
some interactive techniques have been proposed, designers still need to explore a large number of possible revised models,
which makes the interaction time-consuming. Existing interactive tools are limited to interactions with the designers to
evaluate the impact of the co-evolved models on different objectives of the number of inconsistencies, number of changes
and the deviation from the initial models. However, designers are also interested to check the impact of introduced changes
on the decision space which is composed by model elements. These interactions help designers to understand the differences
of the co-evolved models solution that have similar objectives value to select the best one based on their preferences. In this
paper, we propose an interactive approach that enables designers to select their preference simultaneously in the objective
and decision spaces. Designers may be interested in looking at co-evolution operations that can improve a specific objective
such as number of non-conformities with the revised metamodel (objective space), but such operations may be related to
different model locations (decision space). A set of co-evolution solutions is generated at first using multi-objective search
that suggests edit operations to designers based on three objectives: minimizing the deviation with the initial model, the
number of non-conformities with the revised metamodel and the number of changes. Then, the approach proposes to the
user few regions of interest by clustering the set of recommended co-evolution solutions of the multi-objective search. Also,
another clustering algorithm is applied within each cluster of the objective space to identify solutions related to different
model element locations. The objective and decision spaces can now be explored more efficiently by the designers, who can
quickly select their preferred cluster and give feedback on a smaller number of solutions by eliminating similar ones. This
feedback is then used to guide the search for the next iterations if the user is still not satisfied. We evaluated our approach on
a set of metamodel/model co-evolution case studies and compared it to existing fully automated and interactive co-evolution
techniques.

Keywords Metamodel/model co-evolution - Interactive multi-objective search - Search-based software engineering

1 Introduction

There is an urgent need to find better ways to evolve software
systems and, consequently, improve developers’ productiv-
ity. Like source code, design is subject to evolution due to
changing requirements and technological constraints. The
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make them conform to the new metamodel version. Thus,
a set of change operations must be applied to the ini-
tial model versions to fix the inconsistencies with the new
metamodel version. This process is called metamodel/model
co-evolution [34,72].

Several co-evolution studies are proposed; most of them
are providing either a manual or semi-automated support
based on pre-defined templates of evolution scenarios [10,12,
19,52,53]. In addition to being pre-defined, these templates
are specific to the artifact to co-evolve with the metamodel.
Few fully automated co-evolution studies try to find an entire
edit operations sequence that revises models in accordance
with the new metamodel version [38,39,72]. Understanding
metamodel changes and their impact on the models is chal-
lenging as one metamodel change can impact a large number
of model elements. Thus, it is impossible to manually fix all
the violations without the help of at least a semi-automated
support.

Several techniques proposed to translate metamodel chan
ges into model level edit operations using a set of generic
transformation rules [28,30,32,76]. However, several trans-
formations require interactions with the user, especially when
a lot of elements are changed in the new meta-model.

In our recent work, we proposed an approach to inter-
actively evaluate the co-evolved models using search-based
software engineering [37]. The designers can provide feed-
back about the co-evolved models and may introduce manual
changes to some of the edit operations that revise the
model. However, this interactive process can be expensive,
and tedious since designers must evaluate every recom-
mended set of edit operations and adapt them to the targeted
design, especially in large models where the number of pos-
sible co-evolution strategies can grow exponentially. The
study showed that even the clustering of non-dominated co-
evolution solutions based on objectives will still generate a
considerable number of co-evolution solutions to explore.
Indeed, designers in practice want to co-evolve the model
based on objectives and also the model elements to target
(decision space) when deciding which edit operations to
apply. However, existing co-evolution tools do not consider
the interactive exploration of both objectives and model ele-
ments to co-evolve during the co-evolution process.

In this paper, we extend our previous work by proposing
an interactive approach that combines multi-objective search
(NSGA-II [13]), interactive optimization, and unsupervised
learning to reduce the designer’s interaction effort in explor-
ing both objective and decision spaces when co-evolving
models. Indeed, we followed the feedback collected from
the participants of our previous work [37] used in our valida-
tion to define the scope of this extension and also the current
state of the art. They liked the mix between expressing some
preferences via the fitness function and providing feedback
when exploring the co-evolution solutions and their impact.
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The main feedback received was to provide better support to
understand co-evolution operations’ impact and preferences
not only based on the fitness functions but also based on the
distributions of these operations in the model/meta-models.
For instance, designers express reluctance to make major
changes to the models if there are opportunities to make them
conform with the new metamodel with a minimum set of co-
evolution operations. These types of preferences are hard to
define upfront based on the participants’ feedback and they
need to be balanced with the potential gains.

We generate, first, using multi-objective search, different
possible sets of edit operations by finding the edit opera-
tion sequences that minimize the number of conformance
errors, the deviation with the initial model (reduce the loss
of information) and the number of proposed edit operations.
After a number of iterations, a near-optimal set of solutions
(Pareto front) are generated to the user representing potential
sets of edit operations that co-evolve a model to the evolved
metamodels. However, the Pareto front of possible solutions
can be large. Therefore, it is essential to provide designers
with additional support for managing and understanding this
set. Thus, an unsupervised learning algorithm clusters the
solutions into different categories based on the objectives.
Finally, another clustering algorithm is applied within each
cluster of the objective space to help designers explore the
impact of the recommended edit operations while choosing
the model element to co-evolve. The input for the second
clustering is generated from the first clustering step; hence,
both algorithms are hierarchical. In other words, the designer
can interact with our tool by exploring both the decision and
objective spaces to identify relevant edit operations based
on their preferences quickly. Thus, the developers can focus
on their regions of interest in both the objective and deci-
sion spaces. The designers are in general concerned about
improving specific objectives, and then they will look for the
edit operations that target the model elements of their inter-
ests. Therefore, we followed this pattern in our approach by
clustering first the objective space and then we showed the
designers the distribution of the co-evolution solutions into
different decision space clusters for their preferred objective
space cluster.

The feedback from the designers, both at the cluster and
solution levels, are used to automatically generate constraints
to reduce the search space in the next iterations and focus on
the region of designer’s preferences/interest. For instance,
the designer can select the most relevant cluster of solutions,
called region of interests, based on his/her preferences and
then the multi-objective search will reduce the space of possi-
ble solutions, in the next iterations, by generating constraints
from the interaction data such as eliminating part of the model
elements that are not relevant for the co-evolution. We note
that non-breaking metamodel/model changes are outside of
the scope of your approach.
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We selected 20 participants to manually evaluate the effec-
tiveness of our tool on a set of three Ecore metamodels
from the Graphical Modeling Framework (GMF) and a well-
known evolution case of the UML metamodel for Class
Diagrams extracted from [11,77]. Furthermore, we compared
our approach to existing fully automated co-evolution tech-
niques [38,39,77], an interactive clustering approach without
considering the decision space [37], and an interactive
approach without clustering the solutions [40]. The manual
evaluation of the revised models to meet new metamodel
changes confirms the effectiveness of our clustering-based
interactive approach. Since the execution of the two cluster-
ing algorithms is hierarchical, the final results are actually the
combination of two clustering steps. We recorded in our tool
all the interactions with the user and we found that all par-
ticipants used both the objective and decision space clusters
before selecting a final solution. In the post-study feedback,
participants emphasized that both the decision and objective
space interactions helped them to find a relevant co-evolution
solution. The common pattern was to establish their goals
from co-evolving the models to ensure conformance with
the new metamodels and then they used the decision space
to find a solution that matched their context (e.g., model ele-
ments to change).

The main contributions of this paper can be summarized
as follows:

1. Our paper focuses on the interactive exploration of the
objective and decision spaces while existing work focus
only on either the objective space or the decision space
and they often lack user interaction in the decision space.
Our approach is not about a simple filtering of the edit
operations based on the model/metamodel elements loca-
tions or the clustering of the Pareto front based on the
locations. We enabled designers to interactively navigate
between both objective and decision spaces to understand
how the edit operations are distributed if they are inter-
ested to improve specific objectives. Then, our approach
can generate even more relevant suggestions after extract-
ing that knowledge from the exploration of the Pareto
front.

2. Our contribution is beyond the adoption of an exist-
ing metaheuristic technique to co-evolve models. The
proposed approach includes an algorithm to enable the
exploration of both decision and objective spaces by
combining two level of clustering algorithms with multi-
objective search.

3. We implemented and validated our tool using a variety of
metamodels, and we compared it to the current state of the
art of co-evolution tools . The results support the hypothe-
sis that the combination of both the objective and decision
spaces significantly improved the edit operation recom-

mendations to co-evolve models. The online appendix
related to this paper can be found in [1]

The remainder of this paper is structured as follows. Sect. 2
provides the background of metamodel/model co-evolution
and presents a motivating example. Sect. 3 describes our
approach, while the results obtained from our experiments
are presented and discussed in Sect. 4. Threats to validity
are discussed in Sect. 5. After surveying the related work
in Sect. 6, a conclusion with an outlook on future work is
provided in Sect. 7.

2 Background and motivating example

2.1 Metamodel/model co-evolution by a motivating
example

In MDE, metamodels are the means to specify the abstract
syntax of modeling languages [7]. Metamodels are instanti-
ated to produce models which are, in essence, object graphs,
i.e., consisting of objects (instances of classes) represent-
ing the modeling elements, object slots for storing values
(instances of attributes), and links between objects (instances
of references). The object graphs are often represented as
UML object diagrams and have to conform to the UML class
diagram describing the metamodel. This means, for a model
to conform to its metamodel, a set of constraints have to be
fulfilled. This set of constraints is normally referred to as
conformsTo relationship [34,72].

Figure 1 shows an example of a simplified metamodel
evolution, based on simple staff modeling language taken
from [69] and a model conform to the initial metamodel ver-
sion. The metamodel evolution comprises three steps: extract
sub-classes for Person class resulting in ProjectStaff, Inter-
nalStaff, and ExternalContact, make class Person abstract,
refine the types of the assignedTo and contact references, as
well as restrict the existence of the salary attribute only for
Staff instances. This evolution results in the fact that, besides
other constraint violations, the constraint shown in Listing 1
is violated when considering the initial model shown in
Fig. 1c and its conformance to the new metamodel version
in Fig. 1b.

To re-establish conformance for the given example, let
us assume that only two edit operation types on models are
used. Non-conforming objects may either be retyped (reclas-
sified as instances of the concrete classes) or deleted. Thus,
the potential solution space for retyping or deleting non-
conforming elements contains (¢ + 1)? solutions (with ¢ =
number of candidate classes + 1 for deletion, 0 = number of
non-conforming objects). This means, in our given example,
we would end up with 64 possible co-evolutions.
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Fig.1 Example of metamodel
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(a) Initial Metamodel Version
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(b) Revised Metamodel Version

assignedTo

prl: Project

contact

pl: Person

p2 : Person p3 : Person

name: A...
salary : 2000

“ o« o"

name:,C...
salary : null

name :,,B...
salary : 3000

Listing 1 Type/Object Relationship formalized as OCL Constraint

context M! Object
inv typeExists: MM Class. alllnstances() —
exists(clc.name = self.type and not c.isAbstract)

Several co-evolution studies proposed to revise models
after metamodels evolution from manual to fully automated
approaches [26]. Recently, few automated/interactive tools
[38—40] have used search-based software engineering to gen-
erate revised models. The proposed tools refine an initial
model instantiated from the previous metamodel version to
make it as conformant as possible to the new meta-model
version by finding the best compromise between three objec-
tives, namely minimizing(i) the non-conformities with new
metamodel version, (ii) the changes to existing models, and
(iii) the dissimilarities between the initial and revised models.

@ Springer

(c) Initial Model Version

The output is several equally good solutions (edit operations
that revise the model) presented to designers to select the
appropriate one based on his/her preferences. In fact, design-
ers may prefer solutions that introduce the minimum number
of changes to the initial model while maximizing the con-
formance with the target metamodel. However, these tools
suffer from several limitations.

First, they lack flexibility since the designer has to inspect
a large list of potential solutions, which is time consuming,
and s/he may miss to select the best ones. Second, design-
ers always have a concern on expressing their preferences
upfront as an input for a tool to guide the search for co-
evolved models suggestions. They prefer to get insights from
some generated co-evolution solutions then decide which
ones want to improve. Third, the users may spend consider-
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able time to understand the differences between the solutions
and their impacts on the different co-evolution objectives.

Figure 3a shows an example of a large number of equally
good solutions in terms of objectives (represented in points)
where the designer has to decide which solution to select, and
which additional changes to apply to the proposed solutions
generated based only on the multi-objective search (simi-
lar to existing approaches). Figure 2 shows modified models
after applying the set of edit operations of the proposed solu-
tions. The recommended models are represented in a shape
of stars in Fig. 3. This figure shows that there are several pos-
sible solutions that may contain inconsistencies with the new
metamodel version or dissimilarities from the initial model,
and the user has to decide which one to select based on his/her
preferences. Thus, there is a need to reduce the search space
in the next iterations and reduce the interactions effort using
the feedback from the user. While designers were interested
in giving feedback for some co-evolution solutions, they still
find the interaction process time-consuming [37]. Figure 3b
shows that even when the co-evolution solutions are clustered
based on the objectives, the number of solutions to be checked
by designers can be substantial. Thus, they want to know how
different the solutions are within the same objective space.
It may be possible to find more than one co-evolution solu-
tion that offers the same level of objective improvements
but co-evolves different model elements. Thus, the objec-
tive and decision spaces clustering are necessary. Existing
co-evolution techniques do not enable designer interaction
based on both the decision space and objective space, that is
the main challenge of this paper.

2.2 Multi-objective algorithms

To better understand our contribution, we present some back-
ground definitions related to multi-objective optimization.

Definition 1 (MOP). A multi-objective optimization prob-
lem (MOP) consists in minimizing or maximizing an objec-
tive function vector f(x) = [ f1(x), f2(x), ..., fu(x)] of M
objectives under some constraints. The set of feasible solu-
tions, i.e., those that satisfy the problem constraints, defines
the search space 2. The resolution of a MOP consists in
approximating the whole Pareto front.

Definition 2 (Pareto optimality). In the case of a minimiza-
tion problem, a solution x* € §2 is Pareto optimal if Vx € £2
andVm € I = {1, ..., M} either f;,,(x) = f,; (x™) or there is
atleastonem € I suchthat fy,, (x) > f,;(x™).In other words,
x* is Pareto optimal if no feasible solution exists, which
would improve some objective without causing a simulta-

neous worsening in at least another one.

Definition 3 (Pareto dominance). A solution x; is said to
dominate another solution x», if x; is no worse than x, in

all objectives and x is strictly better than x, in at least one
objective”. Formally, if we consider a set of objectives f; ,
i € 1..n, to maximize, a solution x; dominates x;.

Vi, fi(x2) < fi(xp) and 3j | fj(x2) < fj(x1)

13

Definition 4 (Pareto optimal set). Fora MOP f(x), A solu-
tion x’ is said to dominate another solution x (denoted
by f(x’) < f(x)) and the Pareto optimal set is P* =
{x € R|-3x" € 2, f(x) < f(x)}.

Definition 5 (Pareto optimal front). For a given MOP f (x)
and its Pareto optimal set P* the Pareto front is PF* =

{f(x),x € P*}.
2.2.1 Non-Sorting Genetic Algorithm 11 (NSGA-II)

NSGA-II is among the widely-used algorithms to address
real-world problems involving conflicting objectives [13].

NSGA-II begins with a generation of an offspring popula-
tion from an initial set of parent individuals using two change
operators of crossover and mutation. The crossover operator
is responsible for creating new solutions based on already
existing ones, e.g., re-combining solutions. The mutation
operator is used to introduce slight random changes into
candidate co-evolution solutions. This operator guides the
algorithm into areas of the search space that would not be
reachable through recombination alone and avoids the con-
vergence of the population towards a few elite solutions.

Both populations of the offspring and parent have the same
size. Then, the merged population (parents and children) is
ranked into several non-dominance layers, called fronts.

As described in Fig. 4, the non-dominated solutions
receive the rank of 1 that represents the first layer, called
the Pareto front. After removing solutions of the first layer,
the non-dominated solutions form the second layer until no
non-dominated solutions remain. After assigning solutions
to fronts, each solution is assigned a diversity score, called
crowding distance, which ranks the solutions inside each
front. This distance aims, later, to favor diverse solutions in
terms of objective values. A solution is then characterized by
its front and its crowding distance inside the front. To finish
an iteration of the evolution, NSGA-II performs the environ-
mental selection to form the parent population for the next
generation by picking half of the solutions. The solutions
are included iteratively from the Pareto front to the lowest
layers. If half of the population is reached inside a front,
then the crowding distance is used to discriminate between
the solutions. In the example of Fig. 4, the solutions of the
three first layers are included but not all those of the 4th
one. Some solutions of the 4th layer are selected based on
their crowding distance values. The remaining solutions and

@ Springer
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Fig.2 Example model
co-evolution

assignedTo

prl : Project contact

pl : ProjectStaff

p2 : InternalStaff p3 : ExternalContact

o

name : ,A..
salary : 2000

" "

name : ,B...
salary : 3000

name : ,C...

(a) Revised Model Version 1

assignedTo

,%

prl : Project

pl : ProjectStaff

name : “A...
salary : 2000

”

) (b) Revised Model \{ersion 2

assignedTo prl : Project
pl : ProjectStaff p2 : Person p3 : InternalStaff
name: “A..” name :,B..” name:,C.."
salary : 2000 Salary : 3000 salary : null

(c) Revised Model Version 3

those of the subsequent layers (not displayed in the figure)
are not considered for the next iteration. In this way, most
crowded solutions are the least likely to be selected, thereby
emphasizing population diversification. The Pareto ranking
encourages convergence toward the near-optimal solution,
while the crowding ranking emphasizes diversity.

3 Proposed approach

The general structure of our approach is sketched in Fig. 5.
Our approach includes four main components. The first
component is the multi-objective algorithm, NSGA-II, exe-
cuted for a number of iterations to generate a diverse set of
non-dominated co-evolution solutions called Pareto-optimal
solutions [13], defined as a set of edit operations applied to the
initial model, balancing the three objectives of minimizing
the number of suggested edit operations, the deviation with
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the initial model, and the number of conformance errors with
the revised metamodel.

The output of the first component can be a large number of
possible solutions. Thus, it is essential to provide designers
with additional support for understanding and managing this
set of solutions. The goal of the second phase is to cluster the
solutions based on their objective functions and the similar-
ity among them. Then, a representative solution is identified
from each cluster to present it to the user. The third step
takes, as input, the identified cluster(s) from the user’s choice
in the objective space and execute decision space clustering
algorithm to cluster the co-evolution solutions based on their
model elements locations.

The last phase is to manage the interaction with the user
where s/he can visualize the clusters of solutions and the
representative solution of each cluster in both the objective
and decision spaces. For instance, designers may select a
cluster from the objective space clustering that meets their
objective preferences. Then the second clustering will show
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Fig.4 NSGA-II selection mechanism for a two-objective problem

them how the co-evolution solutions in the preferred objec-
tive space cluster are different in the decision space. The user
can easily avoid looking at many solutions that are similar
in the decision space (modifying almost the same model ele-
ments). The user can interact with the tool at the solution
level, by accepting or rejecting or modifying suggested edit
operations, or the cluster level, by specifying a cluster as a
region of interest. Thus, the goal is to guide, implicitly, the
exploration of the Pareto front to find good co-evolution rec-
ommendations. We extract the user preferences from these
activities to consider them in the next round of iterations to
converge towards to user’s region of interest. This loop will
continue until the user is satisfied and a set of edit operation
is chosen to apply to the model to revise.

In the following, we describe the different main compo-
nents of our approach.

3.1 Phase 1: Multi-objective formulation

The process starts with exploring the search space to find
non-dominated solutions.

To explore this search space, we propose an adaptation
of the non-dominated sorting genetic algorithm (NSGA-II)
to interactively find a trade-off between three objectives that
will be described later.

The first iteration of the process begins with a complete
execution of adapted NSGA-II to our model co-evolution rec-
ommendation problem based on the fitness functions that will
be discussed later. At the beginning, a random population of
encoded edit operation solutions, Py, is generated as the ini-
tial parent population. Then, the children population, Qy, is
created from the initial population using crossover and muta-
tion. Parent and children populations are combined together
to form Ry. Finally, a subset of solutions is selected from Ry
based on the crowding distance and domination rules. This
selection is based on elitism which means keeping the best
solutions from the parent and child population. Elitism does
not allow an already discovered non-dominated solution to be
removed. This process is continued until the stopping criteria
is satisfied.

@ Springer
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Fig.5 High-level overview of the proposed decision and objective space interactive clustering-based multi-objective model co-evolution approach

(DOIC-NSGA-II)

The results of the first execution of search algorithm are a
set of non-dominated solutions that will be clustered and then
updated by the users. After this interactions phase, the multi-
objective search algorithm will continue to run using the new
constraints generated at the cluster and solution levels.

3.1.1 Solution Representation

A co-evolution solution consists of a sequence of n edit
operations to revise the initial model. The vector-based rep-
resentation is used to define the edit operations sequence.
Each vector’s dimension has an operation, and its index in
the vector indicates the order in which it will be applied.
Consequently, vectors representing different solutions may
have different sizes, i.e., number of edit operations.

Table 1 shows the possible edit operations that can be
applied to model elements. The instances of classes are called
objects, instances of features are called slots, and instances of
references are called links. These operations are inspired by
the catalog of operators for metamodel/model co-evolution
presented in [31]. The catalog includes both metamodel and
model changes. Thus, we selected from it all the edit opera-
tions that can be applied to the model level since we are not
changing the metamodels in this paper.

Figure 6 represents a solution that can be applied to the
initial model of our motivating example described in Sect. 2.

3.1.2 Variation Operators

Variation operators help to navigate through the search space
and to maintain a good diversity in the population. There are
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two variation operators used in the optimization algorithm
known as crossover, and mutation.

— Crossover: The process of combining parents in order to
generate new off-springs is called parent crossover. We
utilized “Single Point Crossover” operator for this mean.
In this operator, a random crossover point is chosen and
then the two sides of the parents are swapped to produce
new children.

— Mutation: A small random modification in solution indi-
vidual is named mutation. This process aid to keep
diversity in the population. However, by assigning a low
probability to this operator, we avoid arandom search. We
employed “Bit Flip Mutation” with which a random edit
operation is selected and replaced with another randomly
selected available edit operation. When a mutation oper-
ator is applied, the goal is to slightly change the solution
for the purpose to probably improve its fitness functions.

3.1.3 Fitness Functions.

The investigated co-evolution problem involves searching for
the best sequence of edit operations to apply among the set
of possible ones. A good solution s is a sequence of edit
operations to apply to an initial model with the objectives of
minimizing the number of non-conformities fi(s) = nvc(s)
with the new metamodel version, the number of changes
f2(s) = nbOp(s) applied to the initial model, and the incon-
sistency f3(s) = dis(s) between the initial and the evolved
models such as the loss of information.

The first fitness function nvc(s) counts the number of
violated constraints w.r.t. the evolved metamodel after apply-
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Retype_Object Delete_Object
(Person p1, (Person p2)
Solution (i) | Projectstaff pi)

Delete_Slot
(person p2, salary)

Retype_Object
(Person p3,
ExternzlContact,p2)

Solution representation

assignedTo | or1 : Project
_l contact
pl : ProjectStaff p3 : ExternalContact

assiznedTo | pri:Project
contact
v
pi: Person p2 : Person p3 : Person
name: A.."“ name:,B.." name: C.“
salary : 2000 salary : 3000 salary : null

name: A."
salary : 2000

name: C."

Initial Model Version

Fig.6 Solution representation

Table 1 Model edit operations

Revised Model Version

Operations Element Description

Create/delete Object, link, slot Add/remove an element in the initial model.

Retype Object Replace an element by another equivalent element having a different type.
Merge Object, link, slot Merge several model elements of the same type into a single element.
Split Object, link, slot Split a model element into several elements of the same type.

Move Link, slot Move an element from an object to another.

ing a sequence s of edit operations. We apply, first, the
sequence of edit operations (solution) on the initial model
then we load the evolved model on the target metamodel
to measure the number of conformance errors based on the
number of violated constraints. We consider three types of
constraints, as described in [64]: related to model objects,
i.e., model element (denoted by O.*), related to objects’ val-
ues (V.*), and related to objects’ links (L.*). We use in our
experiments the implementation of these constraints inspired
by Schoenboeck et al. [72] and Richters et al. [64] with slight
adaptations. The constraints are hard-coded in the implemen-
tation of the algorithm and most of them are from the EMF
conformance verification constraints that already exists in
EMF. Thus, we use the following constraints:

0.1 For an object type, a corresponding class must exist
(name equivalence).

Corresponding class must not be abstract.

For all values of an object, a corresponding attribute
in the corresponding class (or in its superclasses) must
exist (name equivalence).

For all (inherited) attributes in a class, a corresponding
object must fulfil minimal cardinality of values.

For all (inherited) attributes in a class, a corresponding
object must fulfil maximum cardinality of values.

0.2
V.3

V4

V.5

V.6 For all values of an object, the value’s type must con-
form to the corresponding attribute’s type (Integer,
String, Boolean).

For all links of an object, a corresponding reference
in its corresponding class (or in its superclasses) must
exist (name equivalence).

For all (inherited) references in a class, a corresponding
object must fulfil minimal cardinality of links.

For all (inherited) references in a class, a corresponding
object must fulfil maximum cardinality of links.

For all links of an object, the target object’s type must
be the class defined by the reference (or its subclasses).

L.7

L.8
L9

L.10

The sequence of edit operations to fix the non-conformities
are dependent to each others; thus, itis not possible to treat the
differentissues inisolation. In fact, the edit operations used to
fix one violation may impact other violations and create new
ones. Thus, we have to treat all the violations together when
generating the set of edit operations as a possible solution.

The second fitness function nbOp(s) aims at minimiz-
ing the changes to the initial models. The “complex” edit
operations of Table 1 are combinations of atomic/primi-
tives operations. Thus, we decomposed the complex edit
operations into atomic ones (mostly add/remove operations)
following the work in [31] to count the number of operations
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nbOp(s) of a solution s (size of s) to ensure a fair normal-
ization. Since the approach generates the solution (the set of
edit operations) randomly during part of the NSGA-II pro-
cess, some of the edit operations can be irrelevant while not
generating any errors. For example, a solution that creates
and deletes the same element multiple times. Thus, the mini-
mization model edits can help in removing redundancies and
irrelevant operations. The goal is to find for the designer a
solution with the minimum number of constraints violations,
the minimum number of changes and as much as possible
similar to the initial model.

The third fitness function dis(s) measures the differ-
ence between the model elements in the initial and revised
model. As the type of a model element may change because
of a change in the metamodel, we cannot rely on elements’
types. Alternatively, we use the identifiers to assess whether
information was added or deleted when editing a model. In
this case, the renamed or extracted model elements will be
considered different than the initial model element. Thus, we
considered the assumption that two model elements could be
syntactically similar if they use a similar vocabulary. Thus,
we calculated the textual similarity using the Cosine simi-
larity [56]. However, identical identifier names are matched
automatically first before even making approximations based
on the following similarity heuristics. In the first step, we tok-
enize the names of initial and revised model elements. The
textual and/or context similarity between elements grouped
together to create a new class is an important factor to evalu-
ate the cohesion of the revised model. The initial and revised
models are represented as vectors of terms in n-dimensional
space where n is the number of terms in all considered mod-
els. For each model, a weight is assigned to each dimension
(representing a specific term) of the representative vector that
corresponds to the term frequency score (TF) in the model.
The similarity among initial and revised model elements is
measured by the cosine of the angle between its representa-
tive vectors as a normalized projection of one vector over the
other. The cosine measure between a pair of model elements,
A and B, is defined as follows:

. AxB
Sim(A, B) = cos(0) = A+B

Let Id; and Id, be the sets of identifiers present respectively
in the initial (M;) and revised (M, ) models. The inconsis-
tency between the models is measured as the complement
of the similarity measure sim(s) which is the proportion of
similar elements in the two models based on the cosine sim-
ilarity. Formally the third fitness function is defined as:

Dis(s)
=1— (CosineSimilarity(id;, id,)/Max(|M;|, |M,]))
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where CosineSimilarity(id;, id,) is defined as follows:

CosineSimilarity(id;, id,)
IM;|
=" MaxSimilarity(1d;, (id,)}"))
j=1

This function will compare between each of the initial
model elements and all the elements of the revised model to
find the best matching.

To summarize, we defined first the cosine measure that
can estimate the similarity between two identifiers. Since
an identifier in an initial model can be similar to more than
one identifier, we calculate the cosine similarity between the
identifier of the initial model with all the identifiers of the
revised model then we match the identifier of the initial model
to the most similar one in the revised model. Since multiple
changes could happen at the same time to multiple identifiers,
we have to calculate the maximum cosine similarity score
between the names to identify the correct matching.

3.2 Phase 2: Objective space clustering

The goal of this phase is to reduce the effort to investigate the
solutions in Pareto-optimal front. This phase tries to group the
solutions based on their fitness function values without filter-
ing or removing any of them. In this way, the solutions can be
categorized based on the similarity among them in the objec-
tives space. Then, a representative solution is identified from
each partition to recommend to the decision maker (center
of the cluster). For this purpose, we used clustering analysis
technique. Clustering is one of the most important and popu-
lar unsupervised learning problems in Machine Learning. It
helps to find a structure in a set of unlabelled data in a way
that the data in each cluster are similar together, while they
are dissimilar to the data in other clusters.

One of the challenges in cluster analysis is to define the
optimal number of clusters. Therefore, we need cluster valid-
ity index as a measure of clustering performance. Different
partitions are computed and the ones that fit the data bet-
ter are selected. The procedure of Phase 2 is illustrated in
Algorithm 1.

3.2.1 Calinski Harabasz (CH) Index

CH Index is an internal clustering validation measure based
on two criteria: compactness and separation [9,62]. CH evalu-
ates the clustering results based on the average sum of squares
between and within clusters and it defines as follows:

~ (N=K) ZE el dist(@, S)

CH = = —
(K =1 X Zyeq, dist(si, k)

D
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Algorithm 1: Pareto-front Clustering

Input : Pareto-front solutions (S)
Output: Labeled solutions (LS),
Clusters Representative Solution (CR)

1 begin Calculate best number of clusters-K
2 for i < 2 to Numberof Clusters do

3 LS =GMMClustering (i, S);

4 L Score;=CalinskiHarabaszIndex(LS);

5| K <« MaxScoreldx();

6 begin GMMClustering (K,S)
7 Wk, Xk, T < Initialize-K-Gaussian();

/* Expectation-Maximization */
8 while — converge do
9 ¥ (snk) <— Expectation();
10 Wk, Xk, Tx < Maximization();
11 EvaluateLikelihood();

12 foreach s, € S do
L /* assigning cluster labels */

13 L, < MaxResponsibilityldx(s,);

/* Find Clusters Representative */
14 foreach Cluster Cy do
15 L C Ry < MaxDensity(s,x € Ci)

16 Return LS, CR;

where N is the size of data, K is the number of clusters,
dist(a, b) is the Euclidean distance, and ¢; and S are the
cluster and global centroids, respectively. The first step in
Pareto-front clustering is to execute the clustering process
with different number of components and to compute CH
score for each. The best number of clusters (K) is defined as
the one that achieves the highest CH score.

3.2.2 Gaussian mixture model (GMM)

GMM is a probabilistic model-based clustering algorithm
with which a mixture of k Gaussian distributions is fitted
on the data. GMM is soft-clustering approach in which each
data point is assigned a degree that it belongs to each of
the clusters. The parameters that need to fit are Mean (u),
Co-variance (Xy), and Mixing coefficient (7rz).

GMM clustering begins by random initiation of parameters
for K components. Then, Expectation-Maximization (EM)
algorithm [63] is employed for parameter estimation. EM is
an iterative process to train the parameters and has two steps.
In the expectation step, an assignment score to each Gaussian
distribution, called “responsibility” or “membership weight”,
is determined for each solution point as follow:

TN (s |t Ze)
K N G, i)

Y (znk) = @)

The responsibility coefficient will be used later for prefer-
ence extraction step. In the maximization step, the parameters

of each Gaussian are updated using the computed responsi-
bility coefficients.

3.3 Phase 3: Decision space clustering

Our tool gives designers the ability to select their preferences
in a different space than the optimization space related to the
location of model elements to co-evolve. In the exploration
of the decision space, user preferences are defined for the set
of controlling parameters (mainly model elements to be co-
evolved) that each edit operation has (see Table 1). After
selecting a preferred objective space cluster, the designer
may want to see “the distribution of the solutions within that
region of interest”. In other words, the clustering in the deci-
sion space will show designers the co-evolution solutions
that improve specific objective(s) at the same level (within
the same objective space cluster) but targeting different parts
of model (model elements). To do this, we group the solutions
by their similarity in the decision space and present them to
the developer.

To get an optimal grouping of co-evolution solutions in
the decision space of where the edit operations are applied,
we use a procedure similar to the one used in the objec-
tive space with additional pre-processing steps to project the
co-evolution solutions on the decision space. We define a
projection operator based on the frequency of changes to
the model elements by the edit operations and their locations
(co-evolved model elements). Since the edit operations affect
model elements differently, where some make changes only
at the object while others have effect at the slots and links of
the model, we only count the co-evolved model elements in
our work to have a consistent representation for all vectors
and to create a new representation for the co-evolution solu-
tion vector in the decision space. In this new domain space,
the co-evolution solutions are represented as vectors of inte-
gers where the co-evolved model elements are the dimensions
of the space, and the values are the number of edit operations
for that element. The projection operator is used for the entire
Pareto-front and enables having two different representations
of the same solution set. Note that the number of co-evolved
model elements depends on the size of the co-evolution solu-
tions. Since we considered the same minimum and maximum
size thresholds of co-evolution solutions for all executions of
the algorithm, the time to generate the clusters is similar even
for larger metamodels/models since the size is not based on
all model elements of the project but just those in the co-
evolution solutions. A larger set of modified model elements
may generate more clusters to explore, which can make the
interaction more time-consuming. Additionally, the decision
space clustering heavily depends on how many model ele-
ments are co-evolved within each solution. If the majority of
the solutions in the Pareto front are co-evolving almost the
same model elements (for instance, one object), then mainly
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Pareto-front Clustering
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Fig.7 Illustration of the clustered solutions in the objective space and the decision space

one big cluster will be generated in the decision space. It
is true that a large co-evolution solution may have a higher
probability to modify larger model elements than a smaller
one, but it is more accurate to estimate the number of possible
clusters in the decision space based on the model elements
that are edited by the co-evolution solutions in the Pareto
front.

Figure 7 shows an example using our tool with a popula-
tion size of 100. After the generation of the Pareto front and
the execution of the objective space clustering, the clustering
feature identified four main different clusters. The designer
then selected the purple cluster in the objective space as the
preferred one for further exploration. After that, the solutions
composing it are clustered (in the decision space) based on the
model element locations and their frequency. The designer
can observe that within this cluster, there are three different
clusters in the decision space, where each cluster represents
solutions that co-evolve specific model elements. A user can
click on the preferred co-evolution solution to see the revised
model elements by the edit operations.

The main contribution of our work is enabling the explo-
ration of a diverse set of co-evolution solutions within the
same objectives space. This amounts to having multiple solu-
tions that are neighbors in the objective space but completely
different in the decision space. To do this, we go through all
the clusters determined in the previous step and then use the
GMM clustering algorithm with the same steps described
above to group similar solutions in the decision space. Thus,
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designer can co-evolve the models toward their preferred
objectives while only co-evolving the elements of the model
that interest them.

3.4 Phase 4: developers interaction tool and
preferences extraction

In this phase, the user has the ability to explore the recom-
mended solutions and clusters efficiently and discover the
shared underlying characteristics of the solutions in a cluster
at a glance. He may investigate the center solution of each
cluster, or search further and examine the solutions inside a
cluster of interest. It is also possible to compare the initial
and revised models (charts feature) to evaluate the correct-
ness and relevance of the recommended operations and take
appropriate interaction actions. Every edit operation can be
evaluated by the user. As described in Algorithm 2, we trans-
late each evaluation feedback to a continuous score in the
range of [-1,1].

Figure 8 shows a solution with four edit operations that are
evaluated by the designer.

The user can interact with the tool at the solution level by
accepting/rejecting/modifying specific edit operation or the
cluster level by specifying a specific cluster as the region of
interest. Figure 9 shows an example of a SplitModelElement
edit operation that is modified by the designer.

After the interaction is done and the user decides to con-
tinue to the next round, the score of each solution and cluster
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are computed. Solution score (Scorey, ) is defined as the aver-
age of all edit operations score exists in the solution vector.
Similarly, Cluster score (Score,, ) is calculated as the average
of all solutions score assigned to the cluster. Then, the cluster
that achieve the highest score among all clusters is consid-
ered as the user preferred partition in Pareto-front space from
which the preference parameters will be extracted.

The next step of phase 3 of our proposed approach is to
extract user preference parameters from the interaction step.
We consider the representative solution of the preferred clus-
ter as the reference point. Then, we compute the weighted
probability of edit operations (O W P) and target model ele-
ments (M W P). Assuming the selected cluster’s index is j,
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Algorithm 2: Interaction and User Preferences

Input : Labeled solutions (LS)

Output: Preferred Cluster (PC),
Preference Parameters=[
MWP(Model elements Weighted Probability,
OWP(Edit Operation Weighted Probability),
RS(Reference Solution)]

begin User Interaction and Feedback

while — interaction is done do
Feedback; < UserEvaluation(Eo;);

L Vi < Score(Feedback;);

/* SOLUTIONS AND CLUSTERS SCORE */
Scorey; < Average(V; € s;);

Score,, < Average(Scorey; € cy);

PC < cluster with Max score;

begin User Preference Extraction
/* REPRESENTATIVE SOLUTION AS REFERENCE  */
RS <~ CR PC»
foreach [eo;, elt;] € PC do
OW P, < AverageWeightedFreq(eo));
MW P, < AverageWeightedFreq(elt,);

Return PC, Preference Parameters[];

these parameters can be computed as follows:

OWP[, _ Zs,-ecj Yij X (|0p € s5il) 3
ZomeEo ZS,‘ECI' Vij X (lom € sil)
ZS,‘ECI' vij X (lelty € sil)

ZeltmeElts ZS,-GCj Yij X (|elt € sil)

MWP, =

“

where s; is the solution vector, y;; is the membership coef-
ficient of solution i to the cluster j, o is the edit operation
action, Eo is the set of all edit operations, and Elts is the set
of all model elements.

3.5 Applying preference parameters

If the user decides to continue the search process, then the
preference parameters will be applied during the execution
of different components of multi-objective optimization as
described in the following:

— Preference-based initial population: The solutions from
preferred clusters will make up the initial population of
next iteration as a means of customized search start-
ing point. In this way, we initiate the search from the
region of interest rather than randomly. New solutions
need to be generated to fill and achieve the pre-defined
population size. Instead of random creation of the edit
operations based on a unify probability distribution, we
utilize OW P and MW P as a probability distribution.

— Preference-based mutation: For this operator, similarly, if
a solution is selected to mutate, we give a higher chance
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to edit operations of interest to replace the chosen one
based on the probability distribution OW P.

— Preference-based selection: the selection operator tends
to filter the population and assign higher chance to the
more valuable ones based on their fitness values. In
order to consider the user preferences in this process,
we adjusted this operator to include closeness to the ref-
erence solution as an added measure of being a valuable
individual of the population. That means the chance of
selection is related to both fitness values and distance to
the region of interest as:

Chance(s;) Fitness(s;) @)

dist(s;, CRj)’

where dist() indicates Euclidean distance and C R} is the
representative solution of cluster j.

The above-mentioned customized operators aid to keep
the stochastic nature of the optimization process and at the
same time take the user preferred edit operations into account.

The generation and selection of the solutions in the next
iteration of the multi-objective search, after the interactions,
is based on 1) the probability formulas for both co-evolution
operations and their locations extracted from the preferred
decision and objective clusters to select and change solu-
tions in the next iterations, and 2) the initial population of
the next iteration of the search algorithm after interactions
are seeded from the solutions of the preferred cluster. These
are the key factors to integrate preferences, rather than defin-
ing constraints or using the fitness functions as it is done in
the related work. We note that users first start to interact with
clusters in the objective space based on their goals. Once they
select their preferred objective (PO) space cluster, a decision
space clustering is performed on the solutions of PO to show
the user the diversity of the solutions in the decision space.
Then, the user can select the preferred decision space clus-
ter, called PS. The solutions in PS are used to initiate the
population of the next iteration of the multi-objective search
and to calculate the probabilities for the selection and change
operators.

Our proposed approach will help the designer to under-
stand the diversity of the co-evolution solutions when visu-
alizing the clusters thus it will help the user to locate her/his
region of interest in both the objective and decision spaces.
The goal of the interactions and clustering is to gradually
reduce the number of co-evolution solutions to be explored
by the users based on their preferences.

The clustering phase will reduce the search space; how-
ever, the interaction with the user is the critical factor
affecting the size of the clusters since the approach continues
to filter the solutions based on those interactions. Thus, the



Semi-automated metamodel/model co-evolution: a multi-level...

number of clusters and solutions to explore in both decision
and objective spaces depend on the preferences of the user.

4 Validation
4.1 Research questions

We defined two main research questions to measure the
correctness, relevance and benefits of our decision and
objective space interactive clustering-based multi-objective
model co-evolution tool(DOIC-NSGA-II) comparing to :
(1) an approach based on interactive multi-objective search
(I-NSGA-II) [40], but the interactions were limited to accep-
t/reject edit operations and there is no clustering of the Pareto
front or learning mechanisms from the interaction data, (2) an
approach that is based on interactive clustering-based multi-
objective model co-evolution (OIC-NSGA-II) only in the
objectives space [37], (3) an automated multi-objective co-
evolution approach (without the interaction component) [39]
and (4) an existing automated co-evolution approach based
on pre-defined rules without using search methods [77].
The research questions are as follows:

— RQ1: Co-evolution relevance. To what extent can our
approach make meaningful recommendations compared
to existing metamodel/model co-evolution techniques?

— RQ2: Interactive objective and decision spaces clus-
tering relevance. To what extent can our clustering-
based approach efficiently reduce the interaction effort?

The first research question aims to manually evaluate
the correctness of the co-evolution operations and generated
models while the second research question is more dedicated
to the comparison with the SBSE state of the art.

4.2 Experimental setting
4.2.1 Studied metamodels and models

To answer the research questions, we considered the evolu-
tion of GMF covering a period of two years and the UML
Class Diagram metamodel evolution from [11,77]. These
case studies are interesting scenarios since they represent real
metamodel evolutions, used in an empirical study [29] and
studied in other contributions [17,27,66]. For GMF, we chose
to analyze the extensive evolution of three Ecore metamod-
els. We considered the evolution from GMF’s release 1.0 over
2.0 to release 2.1 covering a period of two years. For achiev-
ing a broad data basis, we analyzed the revisions of three
metamodels, namely the Graphical Definition Metamodel
(GMF Graph for short), the Generator Metamodel (GMF
Gen for short), and the Mappings Metamodel (GMF Map

for short). Therefore, the respective metamodel versions had
to be extracted from GMF’s version control system and, sub-
sequently, manually analyzed. From the different metamodel
releases of GMF and UML, we created different scenarios
based on the number of changes that were introduced at
the metamodels level. We merged the releases that did not
include extensive changes and we generated two evolution
scenarios per metamodel type.

The different models and metamodels can be classified
as small-sized through medium-sized to large-sized. In our
experiments, we have a total of 7 different co-evolution sce-
narios where each scenario included eight different models to
evolve for the GMF case-studies. The percentage of changes
between the different releases is estimated based on the num-
ber of modified metamodel elements divided by the size of
the metamodel. The created models for our experiments are
ensuring the metamodels coverage. Furthermore, we used
an existing set of 10 generated models for the case of UML
metamodel class diagram evolution from the deterministic
work of [11,77] and thus we were not involved in the selec-
tion of models and metamodel changes. In order to ensure
a fair comparison with Wimmer et al. [77], we only com-
pared both approaches on the existing UML dataset. Table 2
describes the statistics related to the collected data.

4.2.2 Evaluation metrics

To evaluate the relevance of our tool, we used the manual cor-
rectness (MC) measured by the designers. It consists of the
number of relevant edit operations identified by the designer
over the total number of edit operations in the selected solu-
tions. In addition, we report the number of interactions (NI)
required on the Pareto front for the interactive model co-
evolution approaches. This evaluation will help to understand
if we efficiently reduced the interaction effort. We decided to
limit the comparison to only the interactive multi-objective
approaches [37,40] since they are the only approaches offer-
ing interaction with the user, and it will help us understand the
real impact of the decision space exploration (not supported
by existing studies) on the recommendation and interac-
tion effort. Furthermore, we report the computation time (T)
for the different evolution scenarios to estimate the effort
required to obtain the best co-evolution solutions.

All these metrics are used for the research questions
including the comparison between our decision and objec-
tive space interactive clustering-based multi-objective model
co-evolution approach (DOIC-NSGA-II), an approach that is
based on interactive clustering-based multi-objective model
co-evolution (OIC-NSGA-II) only in the objectives space
[37], an existing interactive multi-objective approach [40]
(without the clustering feature) (I-NSGA-II) and the two
automated techniques of Kessentini et al. [38] and Wimmer
et al. [77].
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Table 2 Statistics related to the collected data of the investigated cases

Metamodels Models
Release #of elements #of changes %of changes #of models #of model ele- #of expected edit
ments (Min,Max) operations (Min,
Max)
GMF Gen 1.41 to 1.90 From 885 to 1120 347 31 8 389, 744 39,70
GMF Gen 1.90 to 1.248 From 1120 to 1216 362 27 8 433, 686 66, 83
GMF Map 1.45 to 1.52 From 382 to 413 62 15 8 203, 394 46, 69
GMF Map 1.52 to 1.58 From 413 to 428 10 1.8 8 347, 402 57, 81
GMF Graph 1.25 to 1.29 From 278 to 279 14 8 142,283 34,55
GMF Graph 1.25 to 1.33 From 279 to 281 42 8 149, 301 29,43
UML CD [77] From 23 to 29 8 10 28, 49 11,23

4.3 Study participants and parameters setting

Our study involved 20 master students in Software Engi-
neering. All the participants are volunteers and familiar with
model-driven engineering and co-evolution/refactoring since
they are part of a graduate course on Software Testing &
Quality Assurance and most of them participated in similar
experiments in the past, either as part of a research project or
during graduate courses. Furthermore, 16 out the 20 students
are working as full-time or part-time developers in software
industry.

Participants were first asked to fill out a pre-study ques-
tionnaire containing five questions. The questionnaire helped
to collect background information such as their role within
the company, their modeling experience, and their familiarity
with model-driven engineering and co-evolution/refactoring.
In addition, all the participants attended two lectures about
model transformations and evolution, and passed six tests
to evaluate their performance in evaluate and suggest model
evolution solutions. We formed 5 groups, each composed
by 4 participants. The groups were formed based on the
pre-study questionnaire and the test results to ensure that
all the groups have almost the same average skill level. We
divided the participants into groups according to the studied
metamodels, the techniques to be tested and designers’ expe-
rience. The participants were asked to manually co-evolve
the different models and evaluate the results of the different
approaches based on a counter-balanced design [60].

The parameters’ values of the different search algorithms
were fixed by trial and error and are as follows: crossover
probability = 0.3; mutation probability = 0.5 where the
probability of gene modification is 0.3; stopping criterion =
100,000 evaluations. Trial and error is a fundamental method
of problem solving. It is characterized by repeated and varied
attempts of algorithm configurations [35].
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4.4 Results

Results for RQ1: Co-evolution relevance. We report the
results of the empirical qualitative evaluation (MC) in Fig. 10.
The majority of the co-evolution solutions recommended by
our approach were correct and validated by the participants
on the different case studies. On average, for all of our four
studied metamodels/models, our approach was able to cor-
rectly recommend 95% of generated edit operations. The
remaining approaches have an average of 91%, 86% and
77% respectively for interactive with objective space clus-
tering [37], the interactive multi-objective approach [40] and
the fully automated multi-objective approach [39].

Compared to the interactive approaches, we found that
some of the co-evolution solutions of DOIC-NSGA-II are not
proposed by OIC-NSGA-II [37] and I-NSGA-II [40]. In fact,
one of the main challenges of multi-objective search is the
noise introduced by sacrificing some objectives and trying to
diversify the solutions. Thus, the decision space exploration
can help the designers know the most diverse co-evolution
solutions among one preferred cluster in the objective space.
Thus, designers did not waste time on evaluating co-evolution
solutions that are similar.

The interactive tools outperformed fully automated one
which shows the importance of integrating the human in the
loop when co-evolving models. Furthermore, it is clear that
adding the clustering feature enables the designers to select
a region of interests based on which objectives they want to
prioritize and what solutions they partially liked.

The deterministic approach defines generic rules for a
set of possible metamodel changes that are applied to the
co-evolved models. Figure 10 shows that our interactive
approach clearly outperform, in average, the deterministic
technique. The comparison is limited to the only case of UML
Class Diagram evolution since for this case Wimmer et al.
[77] provide a set of co-evolution rules. Further adaptations
are required to make this set of rules working on other meta-
models.
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Fig. 10 The median manual

evaluation scores, MC, on the 1
four metamodel evolution

scenarios with 95% confidence

GMF Gen

m DOIC-NSGA-II

A qualitative analysis of the results shows that several
interactions with the designers helped to reduce the search
space by avoiding the edit operations that were rejected by
them. We found that the best final co-evolution solutions
identified by the designers after several interactions with our
tool cannot be recommended by the remaining approaches. In
fact, all these solutions are obtained either after 1) eliminat-
ing/modifying edit operations applied to models that are not
relevant to the designers’ preferences or 2) emphasizing spe-
cific cluster that prioritizes some objectives/model elements
and penalizes others.

All the results based on the MC metric on the differ-
ent case studies were statistically significant with 95% of
confidence level using the Kruskal-Wallis test. Regarding
the effect size, we found that our approach is better than
the others with an A effect size higher than 0.82 for GMF
GEN, GMF MAP, GMF Graph; and an A effect size higher
than 0.88 for Class Diagram. While the results of the man-
ual correctness are consistent independently from the type
of the edit operations, we note that in the case of a meta-
model element addition that change will not break the initial
existing models (non-breaking changes). Thus, it is expected
that the addition of new metamodel elements will create the
least number of inconsistencies at the model level. However,
the deletion of metamodel elements will generate significant
conflicts at the model level and thus the optimization pro-
cess will try to reduce these issues by removing the instances
of the deleted elements in the models while adjusting the
relationships accordingly.

Results for RQ2: interactive clustering relevance. Fig-
ures 11 and 12 summarizes the time, in minutes, and the
number of interaction with the participants to find the most
relevant solutions using DOIC-NSGA-II, OIC-NSGA-II, and

M OIG-NSGA-II
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the interactive approach I-NSGA-II (without clustering). The
time includes the execution of the multi-objective search,
both clusterings, and the different phases of interaction until
the developer is satisfied with a specific solution. The exe-
cution time of OIC-NSGA-II includes all the steps of the
multi-objective search, the objective space clustering and the
interactions, while [-NSGA-II includes the multi-objective
search and the user interactions. Thus, the main differences
in the execution time can be observed in the interaction effort.

All the participants spent less time to find the most relevant
model edit operations on the different metamodels comparing
to OIC-NSGA-II and I-NSGA-II. For instance, the average
time of our approach is reduced by over 44 minutes (60%)
compared to [-NSGA-II for the case of GMF gen. The reduc-
tion of the execution time is mainly explained by the rapid
exploration of fewer solutions after looking mainly to the dif-
ferent solutions in the decision space of the preferred cluster
in the objective space. Our approach has more components
(clustering at both objective and decision spaces) than OIC-
NSGA-II and I-NSGA-II but the clustering at both spaces
significantly reduced the user interactions and helped the user
to quickly check only the solution based on his/her preference
and his/her region of interest to co-evolve the model. The exe-
cution time is mainly affected by the designer’s interaction
effort which is also affected by the co-evolution solutions
that they need to explore and check manually. The decision
space clustering of the preferred cluster from the objective
space dramatically reduces the number of solutions to check
which resulted in fewer interactions. For instance, a designer
can easily avoid checking many solutions within the same
decision space cluster (modifying similar model elements)
that have similar impacts on the objectives
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Fig. 11 Median time, in
minutes, proposed by the 90
different interactive approaches
on the different
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In the post-study feedback, all the participants mentioned
that both the decision and objective space interactions helped
them to identify a relevant co-evolution solution. They found
that the tool is faster and much easier to use than the one
without the clustering component. Also, they mentioned that
adding the decision space helped them to check diverse solu-
tions based on the revised model elements. They used the
objective space to achieve their goals (e.g. minimize the num-
ber of conformance errors in the co-evolved models) then
they used the decision space to find a solution that target the
model elements they want to co-evolve.

Similar observation is valid when comparing our tool to
the fully automated multi-objective tool [39]. 17 out of the 20
participants highlighted the difficulty to select one relevant
solution from a large set of non-dominated solutions and
without offering any flexibility to update them.
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All the users mentioned the high usability of the tool and
the different options that are offered comparing to deter-
ministic tool [77]. They did not appreciate the pre-defined
transformations based on metamodel change types since the
latter are difficult to generalize for all potential changes of
metamodels. The definition of these rules may require a high
level of expertise/knowledge regarding both the previous and
new versions of the metamodel. Thus, the users appreciate
that our tool automatically suggests solutions and update the
list based on their feedback.

5 Threats to validity

Conclusion validity. The parameter tuning of the different
optimization algorithms used in our experiments creates an
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internal threat that we need to evaluate in our future work. The
parameters’ values used in our experiments are found by trial-
and-error. However, it would be an interesting perspective
to design an adaptive parameter tuning strategy [5] for our
approach so that parameters are updated during the execution
in order to provide the best possible performance.

Internal validity. An internal threat is related to the vari-
ation of correctness and speed between the different groups
when using our interactive approach and other tools. In fact,
our approach may not be the only reason for the superior per-
formance because the participants have different skills and
familiarity with MDE tools. To counteract this, we assigned
the participants to different groups according to their expe-
rience so as to reduce the gap between the different groups
and we also adapted a counter-balanced design. Regarding
the selected participants, we have taken precautions to ensure
that our participants represent a diverse set of participants
with experience in model-driven engineering and also that
the groups formed had, in some sense, a similar average skill
set in the model maintenance area. To address the fatigue
threat, we did not limit the time to fill the questionnaire and
we also sent the questionnaires to the participants by email
and gave them the required time to complete each of the
required tasks.

External validity. In this study, we performed our exper-
iments on different widely studied models and metamodels
belonging to different domains and having different sizes.
However, we cannot assert that our results can be general-
ized to other artifacts, and to other practitioners. Another
threat is the limited number of participants and evaluated
models/metamodels. In addition, our study was limited to
the use of specific edit operation types. The considered edit
operations may not cover every co-evolution scenario and
we will extend the list of supported edits operations such as
retyping model elements as part of our future work. However,
the approach itself will remain the same and just the inputs
should be changed. Furthermore, our assumption that design-
ers are looking for both objectives and operation types (and
their locations) when deciding which co-evolution strategy
to adopt may require a separate empirical study to be gen-
eralized and validated. Future replications of this study are
necessary to confirm our findings.

6 Related work

The evolution of metamodels and related artifacts (e.g.,
models, model transformations, OCL constraints, etc.) are
interdependent. A change in one artifact (metamodel) must
be reflected in all other related artifacts. We discuss in
this section approaches explicitly developed to target the
metamodel co-evolution problem such as the co-evolution

of metamodel/Model, metamodel/Transformation Rules and
metamodel/OCL

6.1 Model co-evolution

Co-evolution has been subject for research since several
decades in the database community [65], and especially, the
introduction of object-oriented database systems [6] gave
rise to the investigation of this topic. However, metamodel/-
model co-evolution introduces several additional challenges
mostly based on the rich modeling constructs for defin-
ing metamodels, and consequently, it has to be dealt with
the specific conformsTo relationship between models and
metamodels. Thus, in the last decade, several approaches
emerged which aim to tackle metamodel/model co-evolution
from different angles using different techniques (cf. e.g.,
[26,33,52,59,66,68] for an overview). They can be classified
in three categories [68]:

— Manual specification approaches in which the migra-
tion strategy is encoded manually by the modeler using
general purpose programming languages (e.g., Java),
or model transformation languages (e.g., ATL, QVT)
[57,67,75].

— Metamodel matching techniques used to infer a migra-
tion strategy from the difference between the original
metamodel and the evolved metamodel [10,12,19,22,52,
53,77].

— Operator-based approaches that record the metamodel
changes as a sequence of co-evolutionary operations used
later to infer a complete migration strategy [4,28,32,33,
76].

We give an overview in the following about existing work
in these three categories.

6.1.1 Manual specification approaches

In one of the early work [73], Sprinkle and Karsai present a
domain-specific visual language. The co-evolution of models
is tackled by defining patterns which describe the migration
steps based on metamodel change types. Rose et al. [67]
proposed a textual migration language, using transformation
rules. Flock copies model elements of the old version and
that are still conform to the new version of the metamodel
automatically. Then the user defines manually the migra-
tion specification to co-evolve the remaining non-conforming
model elements. Narayanan et al. [57] present a Model
Change Language (MCL) which represents the differences
between the source metamodel and the target metamodel in
terms of rules, that helps the user to specify model migra-
tions Another manual specification approach is presented in
[75] where a specific transformation language is derived to
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describe the evolution on the metamodel level and derive a
transformation for the model level.

6.1.2 Metamodel matching approaches

Matching approaches are based on the matching between the
initial and evolved metamodel versions. In [22], the authors
proposed an approach compromises five steps for model co-
evolution: change detection, changes is detected either by
comparing between metamodels or by tracing and record-
ing the changes applied to the old version of the metamodel.
The second step is a classification of the changes in meta-
model and their impact in its instances in three categories:
non-breaking changes: changes that do not break the models,
breaking and resolvable changes that break models, but can
be resolved automatically and breaking and non-resolvable:
changes that break model instances but cannot be resolved
automatically. Finally, an appropriate migration algorithm
for model migration is determined. For initial model ele-
ments for which no transformation rule is found, a default
copy transformation rule is applied. This algorithm has been
realized in the model migration framework Epsilon Flock
[67] and in the framework described in [57].

In [12,19,53], the authors compute differences between
two metamodel versions to adapt models automatically. This
is achieved by transforming the differences into a migration
transformation with a so-called higher-order transformation
(HOT), i.e., a transformation which takes/produces another
transformation as input/output.

In order to avoid copy rules at all, co-evolution approaches
which base their solution on in-place transformations (i.e.
transformations which are updating an input model to
produce the output model) have been proposed. In such
approaches (cf. e.g., [32,47,48,53,74,77]), the co-evolution
rules are specified as in-place transformation rules by using
a kind of unified metamodel representing both metamodel
versions, and then, to eliminate model elements that are not
the part of evolved meta-model anymore, a check out trans-
formation is performed. Thus, the models can be migrated to
the new metamodel version without generating completely
new models, instead the models are simply rewritten as long
as needed.

Additionally, in [3], weaving models are employed to con-
nect the changes of the metamodels with the model elements
to provide a basis for reasoning how to perform the migration
of the models to the new metamodel versions.

Most of the above approaches focus on identifying con-
ceptually high-level changes to the metamodel in order
to co-evolve models. They detect such changes either by
manually comparing the two metamodel versions or by
recording, matching or calculating their differences. Thus,
these approaches apply various change-specific strategies
aimed at mirroring the high-level conceptual changes. We

@ Springer

tackled co-evolution of artifacts without the need of comput-
ing differences on the metamodel level. Instead, we search
for solutions which fulfill multiple goals expressed as our fit-
ness functions. Our approach, gives the user a better control
over the result, since we propose a set of alternative resolu-
tion strategies (the best solutions from the Pareto front) to
the user to select appropriate ones and interactively update
them.

6.1.3 Operator-based approaches

Other contributions are based on using coupled operations
[28,30,32,76]. In [76], Wachsmuth provides a library of co-
evolutionary operators for MOF metamodels, each of these
operators provides a model migration strategy. In [28], Her-
rmannsdoerfer provides a tool support for the evolution
of Ecore-based metamodels, which records the metamodel
changes as a sequence of co-evolutionary operations that
are structured in a library and used later to generate a com-
plete migration strategy. But, when no appropriate operator
is available, model developer does the migration manually,
so those approaches depend on the library of reusable cou-
pled operators they provide. To this end, the authors in [32]
extended the tool by providing two kinds of coupled oper-
ators: reusable and custom coupled operators. The reusable
operators allow the reuse of migration strategy independently
of the specific metamodel. The custom coupled operators
allow to attach a custom migration to a recorded metamodel
change. In [4], an approach is presented that uses in a first
phase metamodel matching to derive the changes between
two metamodel versions and in a second phase, operations
are applied based on the detected changes to migrate the cor-
responding models.

Schoenboeck et al. [72] propose an approach that does not
rely on metamodel changes. Authors apply a constrained-
based search to detect the conformance violations and
provide repair operations to re-establish this conformance
relationship.

The next section discusses the approaches proposed to
tackle the transformations co-evolution problem.

6.2 Transformation co-evolution

The evolution of models and transformations can be treated
separately, but when their metamodels are updated or
adapted, those artifacts might be impacted. However, the
co-evolution of metamodels and transformations is differ-
ent from the co-evolution of metamodels and models. The
former depends only on the type of change performed dur-
ing metamodel evolution, and the latter depends not only on
the type of change but also on how the updated elements
may affect the transformation rules [42]. Surprisingly, trans-
formation co-evolution problem has received less attention
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in MDE compared to model co-evolution. Thus, this area is
largely unexplored and may require further investigation.

Like the term conformTo that specifies the relation
between metamodel and model, Mendez et al. [51] introduce
the term DomainConformTo as the relation between trans-
formations and their metamodels. For instance, the source
elements of every transformation rule must correspond to
a metaclass in the source and/or the target metamodel
elements. Even though the authors have studied how a meta-
model evolution may affect that relationship and have given
first pointers to an operator based approach for transforma-
tion co-evolution [51].

Similarly, Kusel [42] proposed an initial set of atomic
operators and some complex ones (that are made up of sim-
ple operators) that can be applied on a given metamodel to
perform changes and allow automatic or semi-automatic co-
evolution of transformation and analyze the influence of the
changes in the original ATL rules.

Di Ruscio et al. [16] proposed an approach to the cou-
pled evolution of metamodels and ATL transformation rules.
This approach contains various activities that start with defin-
ing the dependencies between the transformation language
and the metamodeling language (e.g., establishing the corre-
spondence between ATL and ECore metamodels) which are
used later to derive them between an evolving metamodel
and the existing transformations. The second step is analyz-
ing the impact of changes by detecting all the elements of
the transformation that are affected after the evolution of the
metamodel. Then, the designer evaluates the cost of adapting
the affected transformation; if the adaptation is too expensive,
the designer can decide to refine the metamodel changes to
reduce the cost. After that, the affected transformation can
be adapted.

Levendovszky et al. [45] proposed a Higher Order Trans-
formation to adapt existing transformations developed in
the GME/GReAT toolset. They classify metamodels, with
respect to the affected transformation, to three categories:

— Fully automated : changes that affect existing transforma-
tions which can be automatically migrated without user
intervention.

— Partially automated: changes or modifications that affect
existing transformations which can be adapted automat-
ically, even though some manual fine-tuning is required
to complete the adaptation.

— Fully semantic: changes are those modifications which

affect transformations and cannot be automatically migrated,

and the user has to completely define the adaptation.

The proposed algorithm automatically alerts the user
about missing information when the automation is not pos-
sible. However, the approach is limited to graph-based
languages, considering simple changes and considering sub-

tracting changes only as coarse-grained removals (i.e., rule
level deletions). And this, due to the use of the Model Change
Language (MCL), which represents the differences between
the source metamodel and the target metamodel in terms
of rules that have been designed for model co-evolution in
order to migrate transformation rules. Thus the solution is
only limited to a few evolution cases.

Garcia et al. [21] have proposed an approach compro-
mise two steps for transformation co-evolution: detection and
co-evolution. The detection step compromises the detection
of simple changes (e.g., class renaming) and the detection
of complex changes that are considered as predicates over
simple changes. The former are detected by the difference
between the original and the evolved metamodel using EMF
Compare tool. The latter is realized as a transformation that
takes a Difference model as input and obtains a DiffExtended
model that includes both simple and complex changes. At
the co-evolution step, authors adapt the classification of
changes of model co-evolution [12] to the transformation
co-evolution problem. They define higher order transforma-
tions as a set of ATL rules, that takes transformations as input
and returns a modified transformations by taking as parame-
ters the changes obtained during the detection step to define
a correspondence that map the original transformation into
an evolved one.

Similarly, in [43] and [20], authors have proposed a match-
ing strategy that computes the equivalences and differences
between a pair of metamodels and persists the results in a
mapping model. Then a manual user intervention is needed
to refine the generated mapping model. Finally, a HOT
generates the adaptation transformation from the (refined)
mapping model.

6.3 Artifacts co-evolution

In this section, we discuss approaches for the problem of
co-evolving metamodels and other artifacts such as OCL
constraints. Existing approaches can be classified as online
or offline approaches. Online approaches perform instant
co-evolution for each change during the metamodel evolu-
tion, whereas offline approaches wait after the metamodel
has been evolved to perform co-evolution of the OCL con-
straints.

For online approaches, Demuth et al. [14,15] provide tem-
plates that define a fixed structure for OCL constraints that
are then instantiated to update the constraints. However, they
are limited to 11 templates that cannot cover all changes
at metamodel level. Hassam et al. [24,25] propose a semi-
automatic approach that highlights the constraints that should
disappear after evolution and by formalizing the adaptation
to be applied on impacted constraint after each operation
on a metamodel using the QVT transformation language
[58]. Similarly, Markovic et al. [49,50] proposed an approach
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using QVT, in which they formalize the most important refac-
toring rules for class diagrams and classify them with respect
to their impact on annotated OCL constraints. The advantage
of online approaches is that the order of changes is preserved
and no hidden changes are missed. However, the cancelling
actions during evolution are apart of the detected changes.

For offline approaches, Kusel et al. [44] analyze the impact
of metamodel evolution on OCL, then propose resolution
actions in model transformation by means of ATL helpers.
Cabot and Conesa [8] focused on the metamodel changes that
entail deleting elements. In particular, they aimed to remove
the parts of OCL constraints that use the deleted elements.
Khelladi et al. [41] propose a semi-automatic approach that
records in chronological order the changes to the metamodel.
Then, they detect high-level changes and apply resolution
strategies to adapt OCL constraints based on the structure of
the impacted OCL constraint and the impacted location.

The above-mentioned approaches focus on identifying
conceptually high-level changes to the metamodel in order to
co-evolve OCL constraints. They detect such changes either
by manually comparing the two metamodel versions or by
recording, matching or calculating their differences. Subse-
quently, they apply various change-specific strategies aimed
to mirror the high-level conceptual changes.

To sum up, none of the existing approaches allows the
exploration of different possible co-evolution strategies. On
the contrary, only one specific strategy is either automatically
derived from the calculated set of metamodel changes. So the
resolution result is not guaranteed to be the one desired to
co-evolve an artifact.

6.4 Search-based software engineering

Most software engineering problems can be formulated as
search problems, where the goal is to find optimal or near-
optimal solutions [23].

SBSE has been applied to related problems in Model-
Driven Engineering such as model transformation [18],
transformation testing [70], model refactoring [46], require-
ments modeling [36], product line testing [71], etc. However,
these problems are different in nature than the co-evolution
problem investigated in this paper.

A comprehensive survey of interactive SBSE approaches
can be found in [61]. The problems of contextualization to
developer’s regions of interest during the recommendation
process have been treated in recent SBSE papers for the
code refactoring problem [2,54,55]. Han et al. proposed in
[2] an approach to enable the interactions with the user, and
then a Delta Table can select the next refactoring quickly
to improve a specific objective without calculating a fitness
function. Morales et al. [54] proposed an algorithm to remove
redundant refactoring solutions that may have the same refac-

@ Springer

torings with a different order in the sequence, but the final
design is the same.

None of the above studies focused on the extraction of
user preferences at the decision space.

7 Conclusion

In this paper, we proposed an interactive clustering-based
multi-objective approach for metamodel/model co-evolution
that reduces the interaction effort to find relevant co-evolution
solutions. The feedback received from the designers and the
clustering of the solution space are used to reduce the search
space and converge to better solutions. The clustering of the
decision space helped the designers identify the most diverse
co-evolution solutions among the ones located within the
same cluster in the objective space. We evaluate the effec-
tiveness of our tool on several evolution scenarios extracted
from different widely used metamodels, and we compared
it to fully automated and interactive co-evolution tools. Our
evaluation results provide clear evidence that our tool helped
designers to quickly express their preferences and converge
toward relevant revised models that met the their expecta-
tions.

We plan to extend this work by evolving interactively
model transformation rules and OCL constraints when
the source or target models are revised. Another possible
research direction is to evaluate the feasibility of updating the
test cases based on the evolution of models and metamodels.
The initial population of co-evolution solutions is randomly
generated. Another strategy is to learn constraints after the
execution of the proposed algorithms to guide the selection
of the edit operations. For instance, some constraints can be
learned to avoid conflicting edit operations. We will explore
this direction as part of our future work.
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