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Abstract

Community pharmacies play a vital role in the U.S. healthcare system by ensuring timely, ac-
curate medication delivery and essential patient counseling. However, increasing workloads,
chronic understaffing, and the impact of COVID-19 have disrupted pharmacy workflows, lead-
ing to inefficiencies, delays, and prescription errors. Identifying these anomalies in real-time
is critical for maintaining patient safety and operational efficiency. This study introduces a
machine learning (ML)-based anomaly detection framework designed to optimize pharmacy
workflows and reduce errors. Using data from a community pharmacy in Illinois, we developed
phase-based detection models targeting two key stages of the prescription process: entry and
verification. Algorithms such as Isolation Forest, Local Outlier Factor (LOF), and K-Nearest
Neighbors (KNN) were employed to identify irregularities linked to pending verifications, staff
workload fluctuations, and patient visit frequencies. Our findings indicate that anomalies sig-
nificantly correlate with extended processing times. Implementing real-time anomaly detection
allows pharmacies to proactively address workflow bottlenecks, optimize resource allocation, and
improve prescription accuracy.

1. Introduction

Community pharmacists are vital in the healthcare system, offering medication therapy man-
agement, patient education, and prescription services. However, increasing workload and time
constraints have placed significant pressure on pharmacists and impacted patient care [1, 2].
Reports indicate that over 68% of pharmacists experience job-related stress and role overload
[3], with 76.8% facing burnout [4]. In 2020, independent community pharmacies dispensed an
average of 57,678 prescriptions (RX) annually (approximately 185 per day), up from 57,414 in
2019 [5]. With 19,397 independent community pharmacies in the U.S., representing a $67.1 bil-
lion market [5], operational inefficiencies—exacerbated by the COVID-19 pandemic and staffing
shortages—have led to notable disruptions in pharmaceutical care [6, 4, 7, 8].

A primary factor contributing to these inefficiencies is the presence of undetected process
anomalies within pharmacy workflows. An anomaly in prescription processing refers to any de-
viation from expected operational patterns, such as irregular handling times, data entry errors,
or discrepancies in patient or staff activities. Undetected anomalies in healthcare can result
in serious outcomes, such as medical errors, compromised patient safety, and increased costs
[9, 10]. Detecting these anomalies is crucial, as they can lead to workflow delays, prescription
errors, and risks to patient safety. This study aims to enhance workflow efficiency in community
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pharmacies by leveraging AI for real-time anomaly detection. While anomaly detection (also
known as outlier or novelty detection) has been widely explored in AI and analytics literature
[11, 12], its application in healthcare remains limited. The complexity of healthcare data and the
potential consequences of undetected anomalies present unique challenges in this domain. Effec-
tive anomaly detection in healthcare settings can improve patient outcomes, reduce operational
costs, and enhance overall efficiency.

This study explores anomaly detection in prescription processing workflows using data from
a community pharmacy in Illinois. We focus on identifying irregular patterns that signal inef-
ficiencies or delays in the workflow. We found that anomalies often occur during two critical
phases: prescription entry and final verification. High volumes of prescriptions pending verifi-
cation, fluctuations in staff workload, and irregular patient visit frequencies were key indicators
of workflow disruptions. These anomalies were associated with significant delays, particularly
in the verification stage, highlighting bottlenecks that can compromise patient safety and op-
erational efficiency. Our results suggest that real-time anomaly detection can help pharmacies
proactively identify and address inefficiencies, optimize staff allocation, and reduce prescription
errors, ultimately enhancing patient care and satisfaction.

2. Background

Technological advancements in community pharmacies have aimed to reduce workload and
enhance productivity through tools such as decision-support systems for inventory management
[13, 14], automated drug inventory control systems [15], and data analytics for improving medi-
cation management and minimizing errors [16, 17]. However, these solutions primarily focus on
inventory and administrative tasks, leaving gaps in addressing the complexities of prescription
processing workflows. Specifically, detecting anomalies—irregularities that can disrupt opera-
tions—remains underexplored in community pharmacy settings.

When applied to healthcare data, traditional anomaly detection methods face challenges,
which are high-dimensional, dynamic, and heterogeneous [18]. The vast amount of healthcare
data, computational limitations, and the scarcity of labeled anomaly data further complicate
effective detection [19, 20]. Recent developments in machine learning offer promising solutions
by effectively managing complex, high-dimensional data and learning patterns without the need
for extensive labeled datasets [21, 22]. Despite their success in other domains, the application
of machine learning-based anomaly detection in community pharmacies remains largely unex-
plored. Given the unique characteristics of pharmacy data—including its interdependencies and
heterogeneity—there is a significant opportunity to apply these advanced techniques to improve
prescription processing and error detection in this critical healthcare sector.

3. Method

This section discusses the data, our Anomaly Detection framework, and how we interpret
and Validate the results.

3.1. Data Collection and Dataset Overview

The dataset was sourced from a family-owned community pharmacy in Illinois that became
fully operational in 2020. The pharmacy employs three pharmacists (two full-time, one part-
time) and two technicians (one full-time, one part-time), processing 80-100 prescriptions on slow
days and up to 140 on busy days. Figure 1 illustrates the collaborating pharmacy’s workflow.
The process begins with a technician performing an Intake and Review, followed by RX (Pre-
scription) Verification by the pharmacist. Once verified, billing processes are conducted, leading
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to drug dispensation by the technician. A pharmacist then completes a Final Verification before
the medication is prepared for Pickup/Delivery to the patient.

Figure 1: High-level Workflow for the Community Pharmacy
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Data collected from January to August 2023 includes 16,610 prescription records, exclud-
ing prescriptions containing only COVID-19 test kits or vaccines were excluded. The dataset
tracks various aspects of prescription processing, staff activity, patient details, and insurance
information, reflecting standard community pharmacy operations, summarized in Table ??.

Table 1: Description of Prescription Process Variables

Category Description and Variables

Timestamp Variables Records the date and time at various phases of the prescription process (e.g., RxEntered-
DateTime, RxPhVerifDate, RxDatePickup).

Staff Variables Identifies the staff members involved in different phases of the prescription process (e.g.,
RxEnteredBy, RxPhVerifUser, RxDPVerifUser).

Patient Variables Includes patient identifiers and the doctors prescribing the medication (e.g., RxPatientNo,
RxDoctorname).

Prescription Variables Details about the medications prescribed, their National Drug Code (NDC) status, and
current status (e.g., RxDrugName, RxDrugNDC, RxStatus, RxRefillStatus).

Insurance Variables Information about the insurance carriers involved in the prescription process (e.g., Insur-
anceCarrierName, InsuranceEntityName).

3.2. Anomaly Detection Framework

Our approach focuses on phase-based detection models targeting specific stages of prescrip-
tion processing, including the entry and verification phases. We engineered phase- and non-
phase-dependent features, capturing temporal, staff-related, patient, insurance, and medication-
specific variables. Machine learning models employed include Isolation Forest, Local Outlier
Factor (LOF), and K-Nearest Neighbors (KNN). These models are chosen based on their effec-
tiveness in handling high-dimensional healthcare data, as reported in the benchmark study by
[23].

To integrate the outputs from these models, we apply two strategies: the Majority Votes
approach, which labels anomalies identified by at least two models, and the Conservative ap-
proach, which only considers anomalies consistently flagged by all three models. This dual
strategy balances sensitivity and precision, ensuring robust anomaly detection.

3.3. Interpretation and Validation

To interpret the detected anomalies, we employ association mining and the Frequent Pattern
Outlier Factor (FPOF) method to uncover patterns leading to workflow inefficiencies. Addition-
ally, Welch’s T-tests are conducted to compare processing times (e.g., turnaround time) between
anomalous and non-anomalous cases, determining the statistical significance of detected anoma-
lies. Rigorous cross-validation procedures are implemented to ensure the reliability of the models,
with evaluation metrics assessing accuracy, precision, and recall.
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4. Results

In this section, we present the results of the two phase-based anomaly detection models,
which target distinct stages of the prescription workflow: Phase 1 (prescription entry) and
Phase 2 (prescription verification). By isolating these phases, we identified specific operational
patterns and inefficiencies contributing to workflow anomalies.

4.1. Anomaly Detection Performance

Table 2 summarizes the Isolation Forest, LOF, and KNN performance across both phases.

Table 2: Summary of the Phase 1 and Phase 2 anomaly detection models features and performance.

Attributes Phase 1 Model Phase 2 Model

List of Features

Temporal:
RxPendingVerificationCount AtEntry
PendingPickupCount AtEntry
DayOfWeek AtEntry
DayOfMonth AtEntry
PeakHoursIndicator AtEntry
Staff-related:
PrescriptionsPerStaff AtEntry
StaffVolume AtEntry
Patient-related:
PatientVisitFrequency
IsNewPatient
Insurance-related:
InsuranceType
Medication-related:
AdministrationRoute
DEASchedule

Temporal:
EntryToVerificationTime
RxPendingVerificationCount AtVerification
PendingPickupCount AtVerification
DayOfWeek AtVerification
DayOfMonth AtVerification
PeakHoursIndicator AtVerification
Staff-related:
PrescriptionsPerStaff AtVerification
StaffVolume AtVerification
Patient-related:
PatientVisitFrequency
IsNewPatient
Insurance-related:
InsuranceType
Medication-related:
AdministrationRoute
DEASchedule

% of Observations labeled Anomalies
Labeled by three methods (conservative): 1.28%
Labeled by two methods (majority votes): 5.64%
Labeled by one method: 14.85%

Labeled by three methods (conservative): 0.55%
Labeled by two methods (majority votes): 4.98%
Labeled by one method: 18.22%

Silhouette Coefficient
Isolation Forest: 0.1471
LOF: 0.1568
KNN: 0.2395

Isolation Forest: 0.1325
LOF: 0.1229
KNN: 0.2493

IREOS Criterion
Isolation Forest: 2.2679
LOF: 2.5142
KNN: 2.4314

Isolation Forest: 2.1820
LOF: 2.3243
KNN: 2.3691

Notes. This table outlines the attributes used, the percentage of observations labeled as anomalies by different methods,
and evaluation metrics, including the Silhouette Coefficient and IREOS Criterion across Isolation Forest, LOF, and KNN
models.

In Phase 1, the Majority Votes Approach detected more anomalies, mainly linked to early
workflow indicators such as RXs-pending verification and staff workload measures like staff
volume at the entry. This observation highlights the sensitivity of the entry-phase to prescription
inflow and staff performance fluctuations. Conversely, Phase 2 focused on verification-related
variables like RXs and pickups pending verification, identifying anomalies tied to bottlenecks
in the final verification stage. The Conservative Approach across both phases produced fewer
anomalies but with higher precision, reinforcing the reliability of consensus-based detection.
Evaluation metrics, including the Silhouette Coefficient and IREOS Criterion, confirmed the
models’ effectiveness, with Isolation Forest excelling in identifying outliers broadly, while LOF
and KNN captured more localized irregularities.

4.2. Feature Importance and Anomaly Insights

Using association mining and FPOF, we identify the key features influencing anomaly detec-
tion. In Phase 1, a high number of RXs-pending verification and a low patient visit frequency
were significant predictors of anomalies, suggesting that bottlenecks at the entry stage and unfa-
miliar patients contribute to workflow disruptions. Similarly, in Phase 2, anomalies were strongly
associated with high pending verification, pickup counts, and prolonged processing times.
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Figure 2: Turnaround times of anomalies and non-anomalies in phases 1 and 2

As shown in Figure 2, the comparison of turnaround times revealed significant differences
between anomalous and non-anomalous cases. In Phase 1, anomalous prescriptions had an
average turnaround time of 453 hours compared to 356 hours for non-anomalous cases. Similarly,
Entry-To-Verification times were longer in anomalous cases (343 hours) than in non-anomalous
ones (226 hours). Welch’s T-tests confirmed these differences were statistically significant (p <
0.001). In Phase 2, anomalous cases exhibited extreme delays, with turnaround times averaging
1184 hours compared to 297 hours for non-anomalous cases (p < 0.001).

5. Discussion and Conclusion

This study developed an ML-based, phase-based anomaly detection framework to improve
workflow efficiency in community pharmacies. The system provided real-time insights into op-
erational inefficiencies by integrating features specific to each stage of the prescription pro-
cess—entry, verification, and pickup—as well as staff workload variables. The two-phase detec-
tion approach enabled precise identification of anomalies, particularly during peak hours and
staff transitions, significantly reducing errors and delays in prescription processing.

Phase 1 (prescription entry) anomalies were linked to high pending verification counts and
staff workload imbalances during prescription entry. In contrast, Phase 2 (prescription verifi-
cation) anomalies were associated with bottlenecks in the final verification and pickup stages.
Temporal factors, such as day-of-week patterns, also influenced anomaly occurrence. Our time-
based analyses highlight a clear association between workflow anomalies and processing delays
across both prescription entry and verification stages. Anomalous cases consistently exhibited
prolonged processing times compared to non-anomalous ones, emphasizing the impact of ineffi-
ciencies on overall workflow performance. These findings reinforce the importance of real-time
anomaly detection in identifying and addressing delays to improve pharmacy operations and
patient care.

These findings offer actionable insights for optimizing pharmacy operations. Real-time
anomaly alerts can help managers redistribute workloads, address verification backlogs promptly,
and prioritize prescriptions at risk of delays. Balancing verification queues and monitoring staff
workload fluctuations can prevent cascading inefficiencies, improving patient satisfaction and
operational reliability.
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